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Lecture 1

Introduction

1.1 Sets
A set is a collection of objects. A set could be defined by enumerating the objects
of a set, called elements or members. For example, the letters a, b, c, and d form
a set S = {a, b, c, d}. Sometimes a is in S, is written as a ∈ S. Similarly, f is
not in S is written f /∈ S. In a set the order of the elements does not matter, so
{a, b, c, d} = {b, c, d, a}. The repetition of an element does not change the set, so
{a, a, b} = {a, b}. A set with one element is called a singleton. For example {a} is
the set with one element a. Note that a and {a} are different objects. The set with no
elements is called the empty set and is denoted by ∅.

A different way of defining sets is to specify a property that all elements have or do
not have. For example, if N is the set of natural numbers we can define the set of even
numbers as

E = {x : x ∈ N and x is divisible by 2}
A set A is a subset of a set B, written as A ⊆ B, if each element a ∈ A is also an
element of B. As in arithmetic there are various operations that act on sets. The union
of two sets is a set having the elements of both sets (obviously without repetition). In
symbols, the union operation is written as ∪

A ∪B = {x : x ∈ A or x ∈ B}

For example
{1, 3, 9} ∪ {3, 5, 7} = {1, 3, 5, 7, 9}

The intersection of two sets A and B, denoted by A ∩ B, is a set whose elements are
the common elements of A and B

A ∩B = {x : x ∈ A and x ∈ B}

For example
{1, 3, 9} ∩ {3, 5, 7} = {3}
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The difference of two sets A and B, denoted by A−B, is the set of elements in A but
not in B

A−B = {x : x ∈ A and x /∈ B}
Then operations of union, intersection and difference have the following properties

Commutativity A ∪B = B ∪A
A ∩B = B ∩A

Associativity (A ∪B) ∪ C = A ∪ (B ∪ C)
(A ∩B) ∩ C = A ∩ (B ∩ C)

Distributivity (A ∪B) ∩ C = (A ∩ C) ∪ (B ∩ C)
(A ∩B) ∪ C = (A ∪ C) ∩ (B ∪ C)

DeMorgan’s laws A− (B ∪ C) = (A−B) ∩ (A− C)
A− (B ∩ C) = (A−B) ∪ (A− C)

To prove that two sets A and B are equal we show that A ⊆ B and B ⊆ A. We
prove the first DeMorgan law as an example. Let x ∈ A − (B ∪ C) then x ∈ A and
x /∈ B and x /∈ C. Since x ∈ A and x /∈ B then x ∈ A − B. Similarly, x ∈ A − C
therefore x ∈ (A−B)∩ (A−C) and A− (B ∩C) ⊆ (A−B)∩ (A−C). To prove
the other direction let x ∈ (A − B) ∩ (A − C) then x ∈ A − B and x ∈ A − C.
x ∈ A − B ⇒ x ∈ A and x /∈ B. Similarly, x ∈ A and x /∈ C therefore x is not in
either B or C so x /∈ B ∪ C. Finally, since x ∈ A we get that x ∈ A − (B ∪ C) and
(A−B) ∪ (A− C) ⊆ A− (B ∪ C).

Given a set A then the set whose elements are all possible subsets (including ∅) of
A is called the power set of A and is denoted 2A.

1.2 Relations
An ordered pair is a sequence of two objects. Given two objects, x and y, we can form
two ordered pairs: (x, y) and (y, x). The difference between an ordered pair and a set
is that order matters: (x, y) 6= (y, x). The Cartesian product of two sets A and B is
the set of all ordered pairs (x, y) such that x ∈ A and y ∈ B.

A binary relation R over two sets A and B is a subset of A×B, R ⊆ A×B.

Example 1.1. LetA = {1, 3, 9} andB = {b, c, d}. ThenA×B = {(1, b), (1, c), (1, d),
(3, b), (3, c), (3, d), (9, b), (9, c), (9, d))}. An example binary relation over A and B is
the following relation

{(1, b), (1, c), (3, d), (9, d)}
The two sets need not be distinct. The following relation is a subset of N×N

Example 1.2. The less-than relation defined over the set of natural numbers:

{(i, j) : i, j ∈ N and i < j}
We can generalize and define an ordered n-tuple (a1, . . . , an) and n-ary relation on
sets A1, . . . , An

Theory of Computation 2 c©Hikmat Farhat



A function from a set A to a set B is a binary relation R on A and B with the special
property that any element of A occurs exactly once in R. This conforms with the usual
definition that a function is single valued. Let C be the set of cities in the U.S. and let
S be the set of states. Define the two relations

R1 ={(x, y) : x ∈ C, y ∈ S, and x is a city in state y}
R2 ={(x, y) : x ∈ S, y ∈ C, and y is a city in state x}

Clearly in the above example, R1 is a function but R2 is not a function since many
states have more than one city. Usually, we denote a function on A and B by a letter
such as f or g and write f : A → B. A is the domain of f and B is the range of f .
If a ∈ A we write f(a) to denote the element b ∈ B such that (a, b) ∈ f . b = f(a)
is called the image of a under f . Clearly, we can specify a function f by enumerating
f(a) ∀a ∈ A. A function f : A→ B is one-to-one if a 6= a′ ⇒ f(a) 6= f(a′). Using
the example above where S is the set of states in the U.S. and C is the set of cities
then the function g : S → C, g(s) = the capital of s is one-to-one because different
states have different capitals. A function f : A → B is onto B if each element of B
is the image of some element of A. In the example above, g is not onto since there
are elements of C (cities) which are not the image of elements of S (are not capitals
of states). Finally, a function f : A → B is called a bijection between A and B if
it is both one-to-one and onto. Let C0 be the set of capital cities in the U.S. then the
following function is a bijection: g(s) = the capital of state s.

The inverse of a binary relationR ⊆ A×B, denotedR−1 ⊆ B×A, is the relation
R−1 = {(b, a) : (a, b) ∈ R}. The relation R2 is the inverse of R1. Obviously, the
inverse of a function (in this case R1) is not a function (in this case R2). The reason
in this case is because R1 is not one-to-one and therefore the inverse will not be single
valued. Also if a function f : A→ B is not onto then the inverse is not a function since
there exists b ∈ B such that f(a) 6= b, ∀a ∈ A. When f : A → B is a bijection then
f−1 is a function. Furthermore, f−1(f(a)) = a and f(f−1(b)) = b, ∀a ∈ A, b ∈ B.

Sometimes when a simple bijection exists between two sets A and B then we can
view a ∈ A and b = f(a) ∈ B as indistinguishable.

Example 1.3. For any three sets A, B, and C there is a natural isomorphism of A ×
B × C to (A×B)× C

f(a, b, c) = ((a, b), c)

A very important isomorphism is the one from 2A×B to A × 2B . Given any
relation R on A and B, then R ∈ 2A×B and R is not necessarily a function. Recall
that a function is a relation R with the special property that it is single valued so for
any a ∈ A there is only one b ∈ B such that (a, b) ∈ R. The isomorphism we are
proposing turns any relation R into a function. Suppose that R is not a function, i.e.
there exists a ∈ A and b1, . . . , bn such that (a, bi) ∈ R, ∀1 ≤ i ≤ n. Now since
{b1, . . . , bn} ∈ 2B rewrite the pairs (a, b1) ∈ R, . . . , (a, bn) ∈ R as a single pair
(a, {b1, . . . , bn}) ∈ A × 2B . This isomorphism will be useful when we introduce
nondeterministic finite automata.
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1.3 Proof techniques
Before listing the proof techniques a note about a statement that occurs often in this
course. Given two statements P and Q, we need to show that ”P if and only if Q”.
This statement can be divided into two parts. The first, P only if Q means that if P is
true then Q is true, symbolically P ⇒ Q. The second part, P if Q means that if Q is
true then P is true, symbolically Q⇒ P .

We will study proof techniques that will be used in this course: contradiction,
induction, pigeonhole principle, and diagonalization.

1.3.1 Proof by Contradiction
When using this type of proof technique we assume that the theorem we need to prove
is false and then show that this assumption leads to a contradiction. We will use this
technique to prove that

√
2 is an irrational number. First a useful lemma which uses

the concept of contradiction itself!

Lemma 1.1. An integer n is even if and only if n2 is even.

Proof. There are two parts to the proof. First ”n is even only if n2 is even”, symboli-
cally ”n is even”⇒ ”n2 is even”. Suppose than n is even then we can write n = 2m.
Squaring both sides we get n2 = 4m2 = 2(2m2) thus n2 is even. The second part, ”n
is even if n2 is even”, symbolically ”n2 is even”⇒ ”n is even”. Assume that it is oth-
erwise. Then there exists an odd integer n such that n2 is even. Since n is odd then we
can write n = 2m+1. Squaring both sides we get n2 = (2m+1)2 = 4m2 +4m+1 =
2(2m2 + 2m) + 1 , an odd number which contradicts our assumption that n2 is even.

Theorem 1.1.
√

2 is irrational.

Proof. Assume that
√

2 is rational thus
√

2 = m
n where m and n are integers. We

assume that the greatest common divisor of m and n is one, gcd(m,n)=1. Otherwise
we divide both of them by the gcd and the value of the fraction remains the same.Since
gcd(m,n)=1 then eitherm or n is an odd number. Multiplying both sides of the fraction
with n we get

n
√

2 = m

Squaring both sides we get

2n2 = m2

Then m2 is even and by lemma 1.1 so is m. We write m = 2k and the above equation
becomes

2n2 = 4k2

Theory of Computation 4 c©Hikmat Farhat



Dividing both sides by 2

n2 = 2k2

Therefore n2 is an even number and consequently both m and n are even numbers
which contradicts our starting point that either m or n is an odd number.

1.3.2 Proof by Induction
Proof by induction is a way of showing that all elements of an infinite set have a certain
property. Let the desired property be P . We want to prove that P(k) is true for all
k ∈ N. An induction proof has two parts, the basis and the induction step. In the
basis we prove that P(1) is true and in the induction step we prove that if P(i) is true
then P(i + 1) is true for any i ≥ 1. Once these two steps are done the result, that
P(1),P(2), . . ., are all true follows. This is because P is true from step one. Using
that fact and the induction step proves that P(2) is true and so on.

Example 1.4. For any n ≥ 0, 1 + 2 + . . . , n = n(n+1)
2

Proof. We proceed by induction
Basis. This is the case when n = 1. We have 1 = 1(1+1)

2 = 1.
Induction Step. Suppose that the equality is true for n − 1, then 1 + . . . + (n − 1) =
(n−1)n

2 , and prove that it is true for n.

1 + 2 + . . .+ (n− 1) + n =
(n− 1)n

2
+ n induction hypothesis

=
(n− 1)n+ 2n

2

=
n(n+ 1)

2

Example 1.5. For any finite set A, |2A| = 2|A|

Proof. We prove the above by induction on the size of the set.
Basis. If |A| = 1 let A = {a}. Then 2A = {{a}, ∅} thus |2A| = 2 = 21 = 2|A|.
Induction step. Assume that for |A| = n and |2A| = 2n. Consider B = A ∪ {b}.
Clearly |B| = n + 1. The subsets of B can be divided into two groups: the ones that
contain b and the ones that don’t. The one that do not contain b are just the subsets ofA
since B = A ∪ {b}. On the other hand the subsets that contain b are formed by taking
the union of the subsets of A and {b}. Therefore we can write 2B = 2A ∪ {C ∪ {b} :
C ∈ 2A} and the cardinality of 2B is the sum of the cardinality of the two sets. From
the induction hypothesis |2A| = 2n. Also the second set has the same number of
elements as 2A. Combining the two we get that |2B | = 2 · |2A| = 2n+1 = 2|B|.

1.3.3 The Pigeonhole Principle
Theorem 1.2. If A and B are finite sets and |A| > |B| then there is no one-to-one
function from A to B.
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Proof. we prove the theorem by induction on |B|.
Basis. |B| = 1. Then B contain one element, call it b. Since |A| > |B| = 1 then A
contains at least two elements and any function has to map them to the same element
b. Therefore there is no one-to-one function from A to B.
Induction hypothesis. Suppose that |A| > |B| = n and there is no one-to-one function
from A to B.
Induction step. Let f be any arbitrary function from A to B with |A| > |B| = n + 1.
Choose an element a ∈ A and consider the two setsA−{a} andB−{f(a)}. Define the
function g such that g(x) = f(x) ∀x ∈ A−{a}. Now, |A−{a}| > |B−{f(a)} = n
and by the induction hypothesis g is not one-to-one which means there are two elements
of A − {a} mapped by g to the same element of B − {f(a)}. Since g(x) = f(x)
∀x ∈ A− {a} then f is not one-to-one.

Definition 1.1. A path of length n in a binary relationR is a sequence a1, . . . , an such
that (ai, ai+1) ∈ R for i = 1, . . . , n− 1.

Example 1.6. Let R be a binary relation on a finite set A, and let a, b ∈ A. If there is
a path from a to b in R, then there is a path of length at most |A|.
Assume by way of contradiction that there are paths in R of size greater than |A| and
let (a1, . . . , an) > |A| be the shortest such path. Define the function f : N −→ A as
f(i) = ai. The path (a1, . . . , an) of length n, is just the image of the set {1, . . . , n}
under the function f . Now since n > |A|, by the pigeonhole principle f is not one-
to-one and therefore there exists i, j < n such that f(i) = ai = f(j) = aj . We
can rewrite the path as (a1, . . . , ai, . . . , aj , aj+1, . . . , an) but since ai = aj we get
(a1, . . . , ai, . . . , ai, aj+1, . . . , an). The last path can be shortened by removing the
subpath from ai back to itself which leads to a contradiction because we assumed that
(a1, . . . , an) is the shortest path.

1.3.4 Diagonalization Principle
Theorem 1.3. Let R be a binary relation on a set A, and define the ”rows” of the
relation as Ra = {b | b ∈ A and (a, b) ∈ R}. The ”diagonal” of the relation R is the
set D = {a | a ∈ A and (a, a) /∈ R}. Then D is distinct from Ra ∀a ∈ A.

Proof. Consider Ra for a given a ∈ A. There are two cases. If a ∈ Ra then by
construction (a, a) ∈ R therefore a /∈ D. On the other hand if a /∈ Ra then (a, a) /∈ R
and also by construction a ∈ D. Therefore in the two cases D and Ra have at least the
element a not in common.

Theorem 1.4. The set 2N is uncountable.

Proof. Suppose that 2N is countable. That is we assume that there is a way of enumer-
ating all members of 2N .

2N = {R0, R1, . . .}
The above enumeration induces a relation R over N × N with (i, j) ∈ R iff i ∈ Rj .
Ri = {j ∈ N : (i, j) ∈ R} and consider the set

D = {n ∈ N : n /∈ Rn}
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By the diagonalization principle D 6= Ri for all i. But D is a subset of N which is a
contradiction and therefore 2N is uncountable.

1.4 Closures and Algorithms

Given a set A and a relation R on A we define the reflexive transitive closure of R as

R∗ = {(a, b) : there is a path from a to b in R}

The transitive closure of R can be computed as follows

Initially R∗ = R ∪ {(ai, ai) : ai ∈ A}
for i = 1, . . . , n do

foreach i-tuple (b1, . . . , bi) in Ai do
if (b1, . . . , bi) is a path in R then add (b1, bi) to R∗

The first question that comes to mind is that why we stopped at i = n? Recall from
the result of example 1.6 that in a set A with |A| = n and a relation R ⊆ A2 if there
is a path between two elements a and b the length of the path is at most n. While the
above algorithm is correct it is not efficient at all. Let |A| = n then the |Ai| = ni and
therefore in each iteration of the ”for” loop there are ni tuples to consider. For each
tuple (b1, . . . , bi), we need at most i operations to check if there is a path from b1 to
bi and then add (b1, bi) to R∗. Therefore the cost of the algorithm is

∑n
i=1 i × ni =

O(nn+1). A better algorithm to compute the reflexive transitive closure is the following

Initially R∗ = R ∪ {(ai, ai) : ai ∈ A};
changed=True;
while changed do

changed=False;
forall the ai, aj , ak do

if (ai, aj) ∈ R∗ ∧ (aj , ak) ∈ R∗ ∧ (ai, ak) /∈ R∗ then
R∗ = R∗ ∪ {(ai, ak)};
changed=true;

end
end

end

The above algorithm terminates after at most n2 steps since the while loop adds a
pair at each step and there are at most n2 pairs to be added to R∗. On the other hand,
each step costs at most n3 which is the number of triplets (ai, aj , ak). Therefore the
total cost is O(n5)
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1.5 Alphabets, strings, and languages

1.5.1 Alphabets

An alphabet is a finite set of symbols or characters. For example, the set Σ = {a, . . . , z}
is the Roman alphabet. A useful alphabet that we will use often is the set Σ = {0, 1}.
Usually we use the letter Σ to denote an alphabet.

A string over an alphabet Σ is a finite sequence of symbols from Σ. For example,
abc is a string over Σ = {a, . . . , z}. The length of a string is the number of symbols in
it. Thus, the length of the string w = abcdef , denoted |w| is 6. There is a special string
that has no symbols at all called the empty string and denoted by ε, and it has length 0.
The set of all strings, including the empty string, over an alphabet Σ is denoted by Σ∗.
For example if Σ = {a, b} then Σ∗ = {ε, a, b, aa, ab, bb, aaa, . . .}. This is referred
to as lexicographic ordering, listing shorter strings first and strings having the same
length are listed alphabetically. The concatenation of two strings x and w is denoted
by xw and it is the string formed by the string x followed by the stringw. As a concrete
example, consider : x = cat, w = dog and the concatenated strings xw = catdog,
wx = dogcat.

Concatenating with the empty string results in no change in the string. That is for
any string x, we have that xε = εx = x. A string x is a substring of y (x occurs
consecutively in y) if there exists strings u and v (possibly empty) such that y = uxv.
If u is the empty string then x is called a prefix. Similarly, if v is the empty string then
x is called a suffix. Given a string w and i ∈ N we define wi as

w0 = ε

wi+1 = wiw for all i ≥ 0

The reversal of a string w, denoted by wR, has the same sequence of symbols but
enumerated in reverse. For example if w = theory then wR = yroeht. A formal
definition is given by induction

if |w| = 0 then wR = w = ε

if |w| = n+ 1 then w = ua for some a ∈ Σ and wR = auR

Now we will use the above inductive definition to show that if u and v are strings then
(uv)R = vRuR.

Proof. We proceed by induction on |v|.
Basis. If v = ε then (uv)R = (uε)R = uR = εuR = εRuR.
Induction step. Suppose that |v| = n then (uv)R = vRuR. Let |v| = n + 1 then we
can write v = xa with x ∈ Σ∗, a ∈ Σ and |x| = n.
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(uv)R = (uxa)R

= a(ux)R from definition of string reversal

= axRuR from induction hypothesis

= (xa)RuR from definition of string reversal

= vRuR

A set of strings over an alphabet Σ is called a language. Obviously an language
is a subset of Σ∗. Since languages are sets we define them in similar fashion. For
finite languages it is usually enough to enumerate the strings in the language. Most
languages of interest are infinite. Such languages are specified as follows

L = {w ∈ Σ∗ : w has property P}

For example the language {w ∈ {0, 1}∗ : w has an equal number of 0’s and 1’s}.
Since languages are sets they can be combined by the usual set operations of union,
intersection and difference. In addition some operations are defined only for lan-
guages. Given two languages L1 and L2, the concatenation, L, of L1 and L2, denoted
L = L1L2, is defined as

L = {w ∈ Σ∗ : w = uv for some u ∈ L1 and v ∈ L2}

For example, let L1 = {w ∈ Σ∗ : w has an even number of 0’s} and L2 = {w ∈ Σ∗ :
w starts with a 0 and the remaining symbols are 1’s} then L = L1L2 = {w ∈ Σ∗ :
w has an odd number of 0’s}. Finally, the Kleene star of a language L is defined as
L∗ = {w ∈ Σ∗ : w = w1w2 . . . wk for some k and some w1 . . . wk ∈ L}. Note that
this definition is consistent with the definition of Σ∗ if we regard Σ as a language of
strings of length 1 over the alphabet Σ.

1.6 State machines
We can define a Finite Automaton (FA) or a Finite State Machine (FSM) informally
using a state diagram. A state diagram is a set of states connected by labeled arrows.
It is easier to introduce automaton by an example.

Given an alphabet Σ = {0, 1} the FA shown in Figure 1.1 recognizes all strings
that end with a 1. The main parts of a state diagram are: the states and the labeled
arrows. In this example we have four states, q0 is the start state (arrow coming in), q3

is the final state (double circle). We use the FSM to decide if a string is recognized
by starting at the start state. On each input character, we follow the corresponding arc.
When we run out of input characters, we answer “yes” or “no”, depending on whether
we are in the final state.

The language of a machine M is the set of strings it accepts, written L(M). In this
case L(M) = {1, 01, 11, 001, 011, 101, 111, . . .}.
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q1 q2

0 1

1

0

Figure 1.1: First Automaton Example

1.6.1 Examples of DFAs
Example 1.7. In Figure 1.2 we show a DFA that recognize the language L={w ∈
{0, 1}∗ : w contains at least 1 one and has an even number of 0s}

s q1

q2 q3 1

1

1

1

00 00

Figure 1.2: L(M)=has at least 1 one and number of zero is even

Example 1.8. In Figure 1.3 we show a DFA that recognizes the language L = {w ∈
{0, 1}∗ : w ends with 1 }

q1 q2

0 1

1

0

Figure 1.3: L(M) all strings that end with 1
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q1 q2

1 0

0

1

Figure 1.4: L(M) all strings that end with 0

Example 1.9. In Figure 1.4 we show a DFA that recognizes the language L = {w ∈
{0, 1}∗ : w ends with 0 }.

Example 1.10. In Figure 1.5 we show a DFA that recognizes the language L = {w ∈
{a, b}∗ : w ends with the same character it starts with }.

s

q1 r1

q2 r2

a b

b a

a b

b a a b

Figure 1.5: L(M) all strings that end with the same character it starts with

Example 1.11. In Figure 1.6 we show a DFA that recognizes the language L = {w ∈
{0, 1}∗ : w has an even number of characters }.

q0 q1
0,1

0,1

Figure 1.6: L(M) all strings in which the number of characters is even

Example 1.12. In Figure 1.7 we show a DFA that recognizes the language L = {w ∈
{0, 1}∗ : w has a number of characters divisible by 3}
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q0 q1 q2
0,1 0,1

0,1

Figure 1.7: L(M) all strings in which the number of characters is divisible by 3

Example 1.13. In Figure 1.8 we show a DFA that recognizes the language L = {w ∈
{0, 1}∗ : whas an even number of 1’s}.

q1 q2

0 0

1

1

Figure 1.8: L(M) all strings that have even number of 1’s

Example 1.14. Strings where the sum of digits is a multiple of 3

q0

q1

q2

1

1

2

1

2

20

0

0

Figure 1.9: L(M) all strings in which the sum is multiple of 3
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q0 q1 q2 q3

q4

0 0

0 0 1

1

1 1

0, 1

Figure 1.10: L(M)

Example 1.15. In Figure 1.10 we show a DFA that recognizes the language L = {w ∈
{0, 1}∗ : w = 00v where v contains an even number of ones
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Notre Dame University
Computer Science Department

CSC 311 Theory of Computation

Homework 1

For each of the following languages over Σ = {0, 1} build the DFA that recognizes it.
Each exercise is worth 10 pts.

1. L = {w ∈ {0, 1}∗ : w begins with a 1 and ends with a 0}.

2. L = {w ∈ {0, 1}∗ : w contains at least two 1’s}. Note: Not necessarily consec-
utive.

3. L = {w ∈ {0, 1}∗ : w contains the substring 0110}.

4. L = {w ∈ {0, 1}∗ : every odd position of w is a 1}.

5. L = {w ∈ {0, 1}∗ : every 1 in w is preceded and followed by a 0}.

6. L = {w ∈ {0, 1}∗ : w does not contain 001 as substring}.

7. L = {w ∈ {0, 1}∗ : w contains at least two 1’s not followed immediately by a 0}.

8. L = {w ∈ {0, 1}∗ : w ends in 00}.

9. L = {w ∈ {0, 1}∗ : w has three consecutive 0’s}.

10. L = {w ∈ {0, 1}∗ : the number of 1’s in w is divisible by 3}.
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Lecture 2

Deterministic Finite Automata

2.1 Formal Definition of a DFA
A Deterministic Finite Automaton (DFA) is a 5-tuple M = (Q,Σ, δ, q0, F ) where

• Q is a finite set of called states.

• Σ is a finite set of called the alphabet.

• δ : Q× Σ→ Q is the transition function.

• q0 ∈ Q is the starting state.

• F ⊆ Q is the set of final or accepting states.

A few remarks regarding the definition. First there is only one starting state whereas
there could be many accepting states. Also since φ ⊂ Q we could have 0 final states.
More importantly δ is a function in the mathematical sense which means it is single
valued: for every pair (qi, s) ∈ Q× Σ there is a unique transition.

If A is the set of all strings that machine M accepts, we say that M recognizes the
language A.

2.2 Configuration
A configuration of a deterministic automaton is any element of Q × Σ∗. The binary
relation `M between two configurations is defined as follows

(q, w)`M (q′, w′) iff w = aw′ for some a ∈ Σ and δ(q, a) = q′

We define the multistep transition recursively as follows

1. `M ≡ `1
M i.e. yields in one step

2. (q, w)`nM (q′, w′) iff (q, w)`n−1
M (q′′, w′′)`1

M (q′, w′)

3. (q, w)`∗M (q′, w′) iff (q, w)`nM (q′, w′) for some n

15



2.3 Formal Definition of Computation
Let M = (Q,Σ, δ, q0, F ) be a finite automaton and let w = w1w2 . . . wn be a string in
Σ∗. Then M accepts w iff (q0, w)`∗M (q, ε) for some q ∈ F . A language is called a
regular language if some DFA recognizes it.

Example 2.1. So far we have always defined the transition function δ using a tran-
sition diagram. In this example we give the definition using a formula. Let Σi =
{0, 1, . . . , i− 1} and the language Ai = {w : sum of terms in w is multiple of i}. In
other words, if w = w1w2 . . . wn, with wi ∈ Σi, ∀i, then w1 + w2 + . . . + wn
is multiple of i. The automaton Mi(Qi,Σi, δi, q0, {q0}) recongnizes Ai with Qi =
{q0, q1, . . . , qi−1} and given c ∈ Σ

δi(qj , c) = qk with k = j + c mod i

We will use the definition `∗M to prove that the automatonMi accepts the language
Ai. If w = w1w2 . . . wn with wi ∈ Σ = {0, 1, . . . , i− 1} then define sum(w) =
w1 + w2 + . . . + wn. To prove that Mi recognizes Ai we proceed by induction. It
is sufficient to show that(q0, w)`∗M (q0, ε) iff w ∈ Ai, i.e. sum(w) = 0 mod i. A
stronger property to show would be

(q0, w)`∗M (qk, ε) k = sum(w) mod i (2.1)

We prove equation (2.1) by induction on |w|. The induction basis, for |w| = 0, can
be obtained directly from the definition `∗M since (q0, ε)`∗M (q0, ε) and sum(ε) = 0
mod i. Now assume that equation (2.1) is true for x ∈ {0, 1, i− 1}∗ with |x| = n, and
we show it is true for |xc| = n+ 1 where c ∈ {0, 1, . . . , i− 1}.

(q0, xc)`∗M (qk, ε)⇒(q0, xc)`∗M (ql, c)`M (qk, ε)

Since (q0, xc)`∗M (ql, c) it follows that (q0, x)`∗M (ql, ε) and therefore l = sum(x)
mod i from the induction hypothesis. Also δi(ql, c) = qk with k = l+ c mod i from
the definition of δi. Combining both results we obtain

k =l + c mod i

=(sum(x) mod i) + c mod i

=sum(x) + c mod i

=sum(xc) mod i �

2.3.1 Extended Function
We will find it useful to use an extended function δ̂ : Q× Σ∗ → Q with the following
properties:

δ̂(p, ε) = p

δ̂(p, wc) = δ(δ̂(p, w), c)

An important property is that (p, w)`∗M (q, ε) iff δ̂(p, w) = q.
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2.4 Regular Operations
Let Σ be an alphabet, A and B languages, A,B ⊆ Σ∗ define

• Union: A ∪B = {x | x ∈ A or x ∈ B}

• Intersection: A ∩B = {x | x ∈ A and x ∈ B}

• complement: ∼ A = {x ∈ Σ∗ | x /∈ A}

• Concatenation: AB = {xy | x ∈ A and y ∈ B}

• Star: A∗ = {x1x2 . . . xn | xi ∈ A}

2.5 Closure Under the Intersection Operation
In this section we show that if A1 and A2 are regular languages so is A1 ∩ A2.
Since A1 and A2 are regular then there are automata M1 = (Q1,Σ, δ1, q1, F1) and
M2 = (Q2,Σ, δ2, q2, F2) such that L(M1) = A1 and L(M2) = A2. Now define the
automaton M = (Q,Σ, δ, q, F ) as

• Q = Q1 ×Q2.

• F = F1 × F2.

• q0 = (q1, q2).

• and
δ((p, q), a) = (δ1(p, a), δ2(q, a)) (2.2)

Define

δ̂((p, q), ε) = (p, q)

δ̂((p, q), xa) = δ(δ̂((p, q), x), c) (2.3)

Lemma 2.1. For x ∈ Σ∗.

δ̂((p, q), x) = (δ̂1(p, x), δ̂2(q, x))

Proof. By induction over |x|. The basis of the induction x = ε is true since

δ̂((p, q), ε) = (p, q) = (δ̂1(p, ε), δ̂2(q, ε))

We will assume that it is true for x and show that it is true for xc where c ∈ Σ.

δ̂((p, q), xc) = δ(δ̂((p, q), x), c) from the definition eq (2.3)

= δ((δ̂1(p, x), δ̂2(q, x)), c) from the induction hypothesis

= (δ1(δ̂1(p, x), c), δ2(δ̂2(q, x), c)) from the defintion in eq (2.2)

= (δ̂1(p, xc), δ̂2(q, xc)) from the definition of δ̂1 and δ̂2 �
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Theorem 2.1. L(M) = A1 ∩A2.

Proof.

x ∈ L(M)

⇔ δ̂(q0, x) ∈ F
⇔ δ̂((q1, q2), x) ∈ F1 × F2

⇔ (δ̂1(q1, x), δ̂2(q2, x)) ∈ F1 × F2

⇔ δ̂1(q1, x) ∈ F1 and δ̂2(q2, x) ∈ F2

⇔ x ∈ L(M1) and x ∈ L(M2)

⇔ x ∈ L(M1) ∩ L(M2)

Example 2.2. Consider the languageL = {w | w contains at least two 0s and at least two 1s}.
We can write L = L1 ∩ L2 where L1 = {w | w contains at least two 0s} and L2 =
{w | w contains at least two 1s }. Construct a DFA M to recognize L by starting from
the DFAs M1 and M2 with L1 = L(M1) and L2 = L(M2).

We know from section 2.5 that once we construct M1 = (Q1,Σ, δ1, s1, F1) and
M2 = (Q2,Σ, δ2, s2, F2) then M = (Q,Σ, δ, s, F ) can be obtained as follows

• Q = Q1 ×Q2

• δ ((p, q), a) = (δ(p, a), δ(q, a))

• s = (s1, s2)

• F = F1 × F2

We start with M1. The DFA shown in Figure 2.1 recognizes L1

q0 q1 q2

1 1 0,1

0 0

Figure 2.1: L(M) = {w | contains at least two 0s}

q0 q1 q2

0 0 0,1

1 1

Figure 2.2: L(M) = {w | contains at least two 1s}
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M2 is easy, we just replace 1 with 0 and 0 with 1 in Figure 2.1 with the result shown
in Figure 2.2.

We combine M1 and M2 to get M

(q0, p0) (q1, p0) (q2, p0)

(q0, p1) (q1, p1) (q2, p1)

(q0, p2) (q1, p2) (q2, p2)

0

0

1 1 0,1

0 0

1 1 1

1 1 1

0 0

0 0

Figure 2.3: L(M) = {w | w contains at least two 1s and at least two 0s}

q0 q1

q2

0,1

0,1

1

0

Figure 2.4: L(M) = {w | w begins with a 1}

Example 2.3. Construct a DFA that recognizes the language L = {w | w begins with
a 1 and ends with a 0 }

Let L1 = {w | w begins with a 1} and L2 = {w | w ends with a 0}. The DFAs
that recognize L1 and L2 are shown in Figures 2.4 and 2.5 respectively. We use the
same procedure to construct the DFA that recognizes L1 ∩ L2. The result is shown
in Figure 2.6. It should be noted that the DFA in Figure 2.6 can be simplified further.
First the state (q0, p1) is unreachable from the starting state. Furthermore, the state
(q2, p0) is not really needed and we can replace it by having (q2, p1) transition to itself
on reading a 1 since anyway if we have reached the state (q2, p1) it means we will never
reach an accept state.
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p0 p1

1 0

0

1

Figure 2.5: L(M) = {w | w ends with a 0}

(q0, p0) (q1, p0) (q1, p1)

(q2, p1) (q2, p0)

(q0, p1)

1 0

0 1

1

0

0

1

1

0

1

0

Figure 2.6: L(M) = {w | w begins with 1 and ends with a 0}

2.6 Closure Under the Complement Operation
Let M = (Q,Σ, δ, s, F ) be a DFA with L(M) = L1. Define M = (Q,Σ, δ, s,Q−F )
to be the complement DFA and L(M) = L2.

Theorem 2.2. The regular languages are closed under the complement operation:
L1 = L2.

Proof.

x ∈ L1 ⇔ x /∈ L1

⇔ δ̂(s, x) /∈ F
⇔ δ̂(s, x) ∈ Q− F
⇔ x ∈ L(M)

⇔ x ∈ L2

Example 2.4. Construct a DFA that recognizes the language L2 = {w | w contains
maximum one 0 }.

Theory of Computation 20 c©Hikmat Farhat



Clearly L2 is the complement of the language L1 = {w | w contains at least two
0s} whose DFA is shown in Figure 2.1. Therefore to construct the DFA for L2 we just
turn accepting states into non-accepting states in Figure 2.1 and vice versa. The result
is shown in Figure 2.7.

q0 q1 q2

1 1 0,1

0 0

Figure 2.7: L(M) = {w | w contains max one zero}

2.7 Closure Under the Union Operation
The class of regular languages is closed under the union operation. If A1 and A2 are
regular languages so is A1 ∪A2.

Proof Since A1 and A2 are regular then there exits some automata M1 and M2

such that L(M1) = A1 and L(M2) = A2. To prove that A1 ∪ A2 is regular we con-
struct an automaton M such that L(M) = A1 ∪A2. Let M1 = (Q1,Σ, δ1, q1, F1) and
M2 = (Q2,Σ, δ2, q2, F2) then M = (Q,Σ, δ, q0, F ) is defined by

1. Q = {(r1, r2) | r1 ∈ Q1 and r2 ∈ Q2}. i.e Q = Q1 ×Q2.

2. q0 = (q1, q2).

3. For each (r1, r2) ∈ Q and each a ∈ Σ

δ((r1, r2), a) = (δ1(r1, a), δ2(r2, a))

4. F = {(r1, r2) | r1 ∈ F1 or r2 ∈ F2}. It should be noted hat F 6= F1 × F2.

Let x ∈ A1 = L(M1). Because M1 accepts x then δ̂1(q1, x) = u is an accepting
state, i.e. u ∈ F1. Also let δ̂2(q2, x) = v where v ∈ Q2 could be any arbitrary state,
not necessarily in F2.

δ̂(q0, x) = δ̂((q1, q2), x) from definition

= (δ̂1(q1, x), δ̂2(q2, x)) from lemma 1
= (u, v) ∈ F because u ∈ F1, v ∈ Q2

�

Example 2.5. Construct a DFA that recognizes the language L = {w | w ends with a
0 or contains at least two 1s.
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(q0, p0) (q0, p1) (q0, p2)

(q1, p0) (q1, p1) (q1, p2)

1

0 0 0

1 1

0 1 0 1 01

Figure 2.8: L(M) = {w | w ends with a 0 or contains at least two 1s}

We can write L = L1 ∪ L2 where L1 = {w | w ends with a 0 } and L2 = {w | w
contains at least two 1s}. We follow the construction shown in section 2.7 which is
similar, except for the accept states, to the construction for the intersection operation.
Thee DFAs for L1 and L2 were already constructed and are shown in Figures 2.5 and
2.2 respectively. We relabel the states in Figure 2.2 as p0, p1, p2 instead of q0, q1, q2.
The resulting DFA is shown in Figure 2.8. Note that in the case of intersection (ends
with a 0 and contains at least two 1s), the only accepting state would be (q1, p2).

Notre Dame University
Computer Science Department

CSC 311 Theory of Computation
Hikmat Farhat
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1. Use the closure properties of regular languages to give the state diagram of DFAs
recognizing the following languages

(a) L = {w ∈ {0, 1}∗ : w begins with 1 and ends with 0}
(b) L = {w ∈ {0, 1}∗ : w has exactly two 0’s and at least two 1’s}
(c) L = {w ∈ {0, 1}∗ : w has an even number of 0’s and each 0 is followed by a 1}
(d) L = {w ∈ {0, 1}∗ : w starts with a 0 and has odd length or starts with a 1 and has even length}
(e) L = {w ∈ {0, 1}∗ : w does not contain 1010}

2. Construct a DFA to recognize the language of all binary numbers which are mul-
tiple of 5. In other words,L = {w ∈ {0, 1}∗ : w is a binary number and it is multiple of 5}.
Example: 101 ∈ L and 1010 ∈ L but 110 /∈ L.

3. Give the state diagram of NFAs recognizing the following languages

(a) L = {w ∈ {0, 1}∗ : w ends with 00}
(b) L = {w ∈ {0, 1}∗ : w contains the substring 0101}
(c) L = {w ∈ {0, 1}∗ : w does not contain 1}. The NFA should contain one

state only.

(d) L = {w ∈ {a, b}∗ : w contains 0 or more a’s followed by 0 or more b’s}
(e) L = {w ∈ {0, 1}∗ : the final symbol of w has occurred at least once before in w}

4. Use the subset construction to construct DFA’s that recognize the same language
as in exercises 3a and 3b.

5. Prove that if (p, wc)`∗M (q, c) then (p, w)`∗M (q, ε).

6. Let Σ be an alphabet and D = (Q,Σ, δ, s, F ) be a finite automaton. Use the
definition of the extended function δ̂ to show that δ̂(q, ax) = δ̂(δ(q, a), x), a ∈
Σ, x ∈ Σ∗, q ∈ Q

7. LetM = (Q,Σ, δ, q0, F ) be a DFA such that ∃a ∈ Σ with the property δ(q, a) =
q for all q ∈ Q. Show that either {a}∗ ⊆ L(M) or {a}∗ ∩ L(M) = ∅.

8. Consider the languageLk = {w ∈ {0, 1}∗ : the kth symbol of w from the right is a 1}.
Prove that any DFA that recognizes Lk must have at least 2k states. (Hint: do it
by contradiction).
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Lecture 3

Non Deterministic Finite
Automata

3.1 Non-deterministric Finite Automata
A non-deterministic finite automaton (NFA) is similar to NFA with three additional
properties:

1. Epsilon transitions.Unlike a DFA, an NFA can change from one state to another
without reading an input.

2. Missing transitions. An NFA does not necessarily have a transition on every
input. In that case the value of the transition function is the empty set φ

3. Multiple transitions. An NFA can have multiple transitions on the same input.

3.2 Example
An example NFA is shown in Figure 3.1. The only difference in this case between an
NFA and DFA is that it has multiple transitions from state q1 when the DFA reads ”1”.
The NFA in Figure 3.1 accepts all strings where the 3rd digit from the right is a ”1”.
The definition for accepting in the case of NFA is slightly different from the DFA case.
We say that an NFA accepts a string x if there is at least one path that leads from a
starting state to an accepting state. Using the example in Figure 3.1 and the input string
”0101” we see that there are three possible paths for the NFA:

• q1
0→ q1

1→ q2
0→ q3

1→ q4

• q1
0→ q1

1→ q1
0→ q1

1→ q2

• q1
0→ q1

1→ q1
0→ q1

1→ q1
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q1 q2 q3 q4

0,1

1 0,1 0,1

Figure 3.1: Example NFA

Since one of the paths (first one) leads to an accepting state therefore the NFA accepts
”0101”.

We can construct a DFA to accept the same language. Such a DFA needs to ”re-
member” the last 3 digits and therefore will have 8 states.

3.3 Formal Definition of a Nondeterministric Automa-
ton

Let Σε = Σ ∪ {ε} and 2Q the power set of Q, i.e the set of subsets of Q. A nondeter-
ministic finite automaton is a 5-tuple (Q,Σ,∆, q0, F ) where

1. Q is a finite set of states.

2. Σ is a finite alphabet.

3. ∆ ⊆ Q× Σ×Q is the transition relation.

4. q0 ∈ Q is the start state.

5. F ⊆ Q is the set of accept states.

We can take advantage of the isomorphism mentioned in chapter 1 between the set of
relations and set of functions. Then we can define ∆ as a function:

∆ : Q× Σ→ 2Q

It should be noted that if for a given state and input the transition is missing then it
should be the empty set φ. For example, in Figure 3.1 there are no transitions from
state q4 on any input this implies ∆(q4, 0) = ∆(q4, 1) = φ. This should be contrasted
with the case for DFAs where there is a transition for every input from any state.

3.4 Computation With NFA
The formal definition of computation for an NFA is similar to DFA. LetN = (Q,Σ,∆, q0, F )
be an NFA and w a string over the alphabet Σ. We say that N accepts w if w =
w1w2 . . . wn where each wi ∈ Σε and there is a sequence of states r0r1 . . . rn in Q
such that
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1. r0 = q0

2. ri+1 ∈ ∆(ri, wi+1)

3. rn ∈ F
Alternatively, define the multistep transition function

∆̂ : 2Q × Σ∗ → 2Q

With the properties

∆̂(R, ε) = R (3.1)

∆̂(R, xa) =
⋃

q∈∆̂(R,x)

∆(q, a) (3.2)

We say thatN accepts a string w if ∆̂(q0, x)∩F 6= φ. Intuitively, this means that there
is an accept state reachable from the start state under the input string x.

A useful property:

∆̂(R, a) =
⋃

q∈∆̂(R,ε)

∆(q, a)

=
⋃
q∈R

∆(q, a) (3.3)

3.5 Examples
Example 3.1. Give an NFA that recognizes the following language: L = {w ∈
{a, b}∗ : w = contains an occurrence of bb}.

q1 q2 q3

a,b a,b

b b

Figure 3.2: Example NFA

If the reflexive transition, q1 → q1 and q3 → q3, did not exist then the NFA will
accept the string bb only not an occurrence of bb. For example the string babb which
clearly is in L, would be rejected since it reads the first b, transitions to q2 and ”dies”
since there is no transition out of q2 upon reading a. It is important to note also that
when the NFA reads the first b it does not choose the transition q1 → q2. Therefore
the NFA ”guesses” correctly which possibility to choose. In general, to build an NFA
that matches the occurrence of a string x in an alphabet Σ we just build an NFA that
recognizes x exactly then we add reflexive transition to the initial and final states. The
next example is another illustration of this idea.
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Example 3.2. Give an NFA that recognizes the following language: L = {w ∈
{a, b}∗ : w = contains an occurrence of bab}.

q1 q2 q3 q4

a,b a,b

b a b

Figure 3.3: Example NFA

We can combine the two NFAs above to produce the following.

Example 3.3. Give an NFA that recognizes the following language: L = {w ∈
{a, b}∗ : w contains an occurrence of bb or bab}.

There are many possible NFA that recognize L, one of them is shown in Figure 3.4.
Consider the string w = bababab which is accepted by the presented NFA. Actually

q1 q2

q3q4

q5

a,b

a,b

b

b

a

b

b

Figure 3.4: Example NFA

there are three ways in which the NFA accepts w. Can you find them?

Theory of Computation 28 c©Hikmat Farhat



Lecture 4

Equivalence of DFA and NFA

4.1 Introduction
In this lecture we show that given any NFA we can build a DFA that accepts the same
language. It is useful to recall the definition of ∆̂:

∆̂(R, ε) = R (4.1)

∆̂(R, xa) =
⋃

q∈∆̂(R,x)

∆(q, a) (4.2)

∆̂(R, a) =
⋃

q∈∆̂(R,ε)

∆(q, a)

=
⋃
q∈R

∆(q, a) (4.3)

A useful particular case of (4.3), if R = {p} then

∆̂({p}, a) =
⋃
q∈{p}

∆(q, a)

= ∆(p, a) (4.4)

Lemma 4.1. For all x, y ∈ Σ∗,

∆̂(R, xy) = ∆̂(∆̂(R, x), y)

Proof. We proceed by induction on |y|. Let y = a1a2 . . . an.
basis. For y = ε

∆̂(R, xε) = ∆̂(R, x)

= ∆̂(∆̂(R, x), ε) from (4.1)
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For y = a1.

∆̂(R, xa1) =
⋃

q∈∆̂(R,x)

∆(q, a1) from (4.2)

= ∆̂(∆̂(R, x), a1) from (4.3)

Assume that the relation is true for a1a2 . . . an−1, i.e. suppose that

∆̂(R, xa1a2 . . . an−1) = ∆̂(∆̂(R, x), a1a2 . . . an−1)

Now the result of the lemma

∆̂(R, xy) = ∆̂(R, xa1a2 . . . an−1yn)

=
⋃

q∈∆̂(R,xa1a2...an−1)

∆(R, an) from (4.2)

=
⋃

q∈∆̂(∆̂(R,x),a1a2...an−1)

∆(R, an) from induction step

= ∆̂(∆̂(R, x), a1a2 . . . an−1an) from (4.2)

= ∆̂(∆̂(R, x), y)

Lemma 4.2. The function ∆̂ commutes with set union: for any family of subsets Ri of
Q and x ∈ Σ∗,

∆̂

(⋃
i

Ri, x

)
=
⋃
i

∆̂(Ri, x)

Proof. By induction on |x|
Basis.

∆̂(
⋃
i

Ri, ε) =
⋃
i

Ri from (4.1)

=
⋃
i

∆̂(Ri, ε) from (4.1)

induction step. Assume that the result is true for strings of length |x|, we need to show
that it is true for |xa| where a ∈ Σ

∆̂(
⋃
i

Ri, xa) =
⋃

p∈∆̂(
⋃

i Ri,x)

∆(p, a) from (4.2)

=
⋃

p∈⋃i ∆̂(Ri,x)

∆(p, a) from induction hypothesis

=
⋃
i

⋃
p∈∆̂(Ri,x)

∆(p, a) basic set theory

=
⋃
i

∆̂(Ri, xa) from (4.2)

Theory of Computation 30 c©Hikmat Farhat



A useful particular case of lemma 4.2 is

∆̂({p}, a) = ∆̂(p, a) = ∆(p, a)

4.2 Subset Construction

Given an arbitrary NFA, N = (QN ,Σ,∆, SN , FN ). Let R ⊆ QN and a ∈ Σ,we
produce an equivalent DFA, M = (QM ,Σ, δ, SM , FM ) as follows

QM = 2QN

δ(R, a) = ∆̂(R, a)

SM = {SN}
FM = {R ⊆ QN | R ∩ FN 6= ∅}

Lemma 4.3. For any R ⊆ QN and x ∈ Σ∗, δ̂(R, x) = ∆̂(R, x).

Proof. By induction on |x|
Basis.

δ̂(R, ε) = R from the def. of δ̂

= ∆̂(R, ε) from the def. of ∆̂

induction step. Assume that δ̂(R, x) = ∆̂(R, x). Then

δ̂(R, xa) = δ(δ̂(R, x), a) from def. of δ̂

= ∆̂(δ̂(R, x), a) by construction

= ∆̂(∆̂(R, x), a) induction hypothesis

= ∆̂(R, xa) from lemma 4.1

Theorem 4.1. The automata M and N accept the same language

Proof. For any x ∈ Σ∗

x ∈ L(M)⇔ δ̂(sM , x) ∈ FM definition of acceptance for M

⇔ ∆̂(sM , x) ∈ FM lemma 4.3

⇔ ∆̂({sN}, x) ∈ FM definition of sM

⇔ ∆̂(sN , x) ∈ FM lemma 4.2

⇔ ∆̂(sN , x) ∩ FN 6= ∅ definition of FM
⇔ x ∈ L(N) definition of acceptance for N
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q1 q2 q3

0,1

1 0,1

Figure 4.1: NFA that accepts the language defined in Example 11.1

4.3 Subset Construction Examples
Example 4.1. Consider the language

L = {x ∈ {0, 1}∗ | the second symbol from the right is 1}

We will use the subset construction to build the equivalent DFA. First there will be
23 = 8 subsets

∅, {q1}, {q2}, {q3}, {q1, q2}, {q1, q3}, {q2, q3}, {q1, q2, q3}

Then we use Eq. (4.3), to compute the transition function for the subsets. For a given
subset R we compute ∆̂(R, a) =

⋃
q∈R ∆(q, a). The results are shown in Table 4.1

0 1
∅ ∅ ∅

→ {q1} {q1} {q1, q2}
{q2} {q3} {q3}
{q3} ∅ ∅

{q1, q2} {q1, q3} {q1, q2, q3}
{q1, q3} {q1} {q1, q2}
{q2, q3} {q3} {q3}

{q1, q2, q3} {q1, q3} {q1, q2, q3}

Table 4.1: Transition table for DFA that accepts language defined in Example 11.1

If we follow the transitions from state {q1} we see that states ∅,{q2}, {q3}, {q2, q3} are
inaccessible and therefore can be omitted. The trimmed down version of the transition
table is shown in Table 4.2. Also, if we relabel the states in the trimmed down versions
as follows

0 1
→ {q1} {q1} {q1, q2}
{q1, q2} {q1, q3} {q1, q2, q3}
{q1, q3} {q1} {q1, q2}

{q1, q2, q3} {q1, q3} {q1, q2, q3}

Table 4.2: Trimmed down transition table for DFA for Example 11.1
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00

01

10

11

0 1

1

0

0

1

1

0

Figure 4.2: DFA that accepts the language defined in Example 11.1

{q1} ↔ 00
{q1, q2} ↔ 01
{q1, q3} ↔ 10

{q1, q2, q3} ↔ 11

we get exactly the DFA we would have designed originally to recognize the language
in Example 11.1 and shown in Figure 4.2.

Example 4.2. Consider the language

L = {x ∈ {0, 1}∗ | x ends with 1}

The language in this example is accepted by the NFA shown in Figure 4.3.

q1 q2

0,1

1

Figure 4.3: NFA that accepts the language defined in Example 11.2

We use the subset construction to build the equivalent DFA. First there will be 22 = 4
subsets

∅, {q1}, {q2}, {q1, q2}

Then we use Eq. (4.3), to compute the transition function for the subsets. For a given
subset R we compute ∆̂(R, a) =

⋃
q∈R ∆(q, a). The results are shown in Table 4.3

Again we see that state {q2} and ∅ are not reachable therefore can be omitted and the
DFA reduces to having only 2 states. The (expected) result is shown in Figure 4.4
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0 1
∅ ∅ ∅

→ {q1} {q1} {q1, q2}
{q2} ∅ ∅

{q1, q2} {q1} {q1, q2}

Table 4.3: Transition table for DFA that accepts language defined in Example 11.2

q1 q2

0 1

1

0

Figure 4.4: DFA that accepts the language defined in Example 11.2
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Lecture 5

Non Deterministic Finite
Automata with ε Transitions

5.1 Introduction
In this section we introduce another ”feature” for NFAs. we allow transition on the
empty string ε. An NFA can make a transition spontaneously without reading any
input. This new capability while useful does not add any power to NFAs.

Example 5.1. The language L = {an | n is even or multiple of 3} is recognized by
the ε-NFA shown in Figure 5.1.

s

q1

q2

p1

p2

p3

ǫ

ǫ

a

a

a

a

a

Figure 5.1: ε-NFA to recognize language of example 5.1

The ε-NFA ”guesses” which path to take depending whether the input has an even
number of a’s or multiple of 3. This is done without ”consuming” any input, hence the
ε-transitions.
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5.2 Formal Definition of an ε-NFA
An ε-NFA A is represented by A = (Q,Σ,∆, q0, F ) where all the components have
the same meaning as for NFAs except that the domain of ∆ is Σ∪{ε}. We require that
ε cannot be a member of Σ.

Example 5.2. Figure 5.2 accepts decimal numbers consisting of an optional +/- sign
followed by a sequence of digits, a dot then a second sequence of digits. One of the
sequence of digits can be empty but not both.

q0 q1 q2 q3

q4

q5

0 . . . 9 0 . . . 9

ǫ,+,- ·

0 . . . 9

0 . . . 9

·

ǫ

Figure 5.2: ε-FNA to recoginize the language of example 5.2

The ε-NFA of example 5.2 can be represented formally as

E = ({q1, . . . , q5}, {·,+,−, 0, . . . , 9},∆, q0, {q5})

where the transition table for ∆ is shown in Table 5.1.

ε +,- · 0 . . . 9
q0 {q1} {q1} φ φ
q1 φ φ {q2} {q1, q4}
q2 φ φ φ {q3}
q3 {q5} φ φ {q3}
q4 φ φ {q3} φ
q5 φ φ φ φ

Table 5.1: Transition table for example 5.2

Example 5.3. Let Σ = {a1, . . . , an} be alphabet with n symbols and let L = {w ∈
Σ : there is a symbol ai ∈ Σ not appearing in w}.

Here also we use ε-transitions to solve the problem. First define āi = Σ − {ai}.
then an NFA that accepts all the strings that do not contain ai is shown in Figure 5.3.
We build n such NFAs, one for every different symbol, and combine them using ε-
transition. The resulting NFA, shown in Figure 5.4, would ”guess” which symbol is
missing uses the appropriate ε-transition.
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q1

āi

Figure 5.3: Strings that do not contain ai

s

q1

q2

qn

ā1

ā2

ān

ǫ

ǫ

ǫ

Figure 5.4: Strings that do not contain all ai ∈ Σ

5.3 Epsilon Closure
Before we proceed with the study of the properties of ε-NFAs we need to define an
important concept called the ε-closure of a state. Informally, the ε-closure of a state q
is a set containing q and all states that can be reached from q along a path containing
ε-transitions only. Formally, the ε-closure of a state q, E(q) is defined recursively as
follows

Basis: state q ∈ E(q)
Induction: if p ∈ E(q) then ∆(p, ε) ⊆ E(q). In other words, if p ∈ E(q) then for all
s ∈ ∆(p, ε), s ∈ E(q).

Example 5.4. As an example of ε-closure consider the ε-NFA in Figure 5.5 and com-
pute E(q1) we get

E(q1) = {q1, q2, q3, q4, q6}
This is because each of the states listed can be reached from q1 along a path containing
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q1

q2 q3 q6

q4 q5 q7

ǫ

ǫ

ǫ ǫ

a

b

ǫ

Figure 5.5: Example for ε-closure

ε-transitions only. For example, state q6 is reached from q1 along q1 → q2 → q3 → q6

while q7 /∈ E(q1) because to reach q7 from q1 we must use the transition q4 → q5

which is not an ε-transition.

It should be noted that the ε-closure of a set is the union of the e-closure of its members:

E(R) =
⋃
p∈R
E(p)

5.4 Computing With ε-NFA’s
Let E = (Q,Σ,∆, q0, F ) be an ε-NFA. We need to define what happens when E reads
a sequence of inputs. For R ⊆ Q, a ∈ Σ, x ∈ Σ∗ The extended transition function ∆̂
is defined recursively as follows

∆̂(R, ε) = E(R) (5.1)

∆̂(R, xa) = E

 ⋃
p∈∆̂(R,x)

∆(p, a)

 (5.2)

In particular, if we set x = ε and R = {q} in (5.2) we get

∆̂(q, a) = E

 ⋃
p∈∆̂(q,ε)

∆(p, a)


= E

 ⋃
p∈E(q)

∆(p, a)

 (5.3)

In Equation (5.3) the starting state of ∆̂(q, a) is not the state q but the ε-closure of q,
i.e. all the states that can be reached from q by ε-transitions. Also, ∆̂(q, a) includes the
states that can be reached by ε-transitions from all states in ∆(q, a).
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Example 5.5. We illustrate the use of equations (5.1- 5.3) by computing ∆̂(q0, 1.2)
using the ε-NFA of example 5.2.

∆̂(q0, 1) = E

 ⋃
p∈E(1)

∆(p, 1)


= E

 ⋃
p∈{q0,q1}

∆(p, 1)


= E (∆(q0, 1) ∪∆(q1, 1))

= E (φ ∪ {q1, q4})
= {q1, q4}

∆̂(q0, 1.) = E

 ⋃
p∈∆̂(q0,1)

∆(p, ·)


= E (∆(q1, ·) ∪∆(q4, ·))
= E ({q2, q3})
= {q2, q3, q5}

Note that ∆̂(q0, 1.)∩ {q5} 6= φ and therefore by the definition of acceptance the string
”1.” is recognized by the ε-NFA. Continuing with the string

∆̂(q0, 1.2) = E

 ⋃
p∈∆̂(q0,1.)

∆(p, 2)


= E (∆(q2, 2) ∪∆(q3, 2) ∪∆(q5, 2))

= E ({q3} ∪ {q3} ∪ φ)

= {q3, q5}

Since ∆̂(q0, 1.2)∩{q5} 6= φ, the ε-NFA accepts the string ”1.2”. As a counter example
if we consider the string ”1..” (with 2 dots) we would get

∆̂(q0, 1..) = E

 ⋃
p∈∆̂(q0,1.)

∆(p, .)


= E (∆(q2, .) ∪∆(q3, .) ∪∆(q5, .))

= E (φ ∪ φ ∪ φ)

= φ
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5.5 Equivalence of ε-NFA and DFA
Given an ε-NFA E we can construct a DFAD that accepts the same language, L(E) =
L(D). The construction is very similar to the subset construction for NFAs. Let E =
(QE ,Σ,∆, sE , FE) then the equivalent DFA D = (QD,Σ, δ, sD, FD) is defined as
follows:

1. QD is the set of subsets of QE : QD = 2QE .

2. sD = E(sE). The starting state of D is the ε-closure of the starting state of E.

3. FD ⊆ QD is a set of subsets of QE where each set has at least one accepting
state of E. FD = {S | S ⊆ QD and S ∩ FE 6= ∅}

4. δ(R, a) = ∆̂(R, a).

As an example we construct a DFA from the ε-NFA discussed previous lectures and
shown in Figure 5.6. The corresponding DFA is shown in Figure 5.7.

q0 q1 q2 q3

q4

q5

0 . . . 9 0 . . . 9

ǫ,+,- ·

0 . . . 9

0 . . . 9

·

ǫ

Figure 5.6: ε-NFA that accepts decimal numbers

{q0, q1} {q1} {q1, q4} {q2, q3, q5}

{q3, q5}{q2}

0 . . . 9

0 . . . 9

+,- 0 . . . 9
·

0 . . . 9

0 . . . 9

·
·

0 . . . 9

Figure 5.7: A DFA equivalent to the ε-NFA in Figure 5.6
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In should be noted that we have omitted the state ∅ and all transitions to it from the
DFA in Figure 5.7. For any state in Figure 5.7 there is a transition to state ∅ for any input
that is not shown in the figure. For example, ∆({q1},+) = ∆({q1},−) = ∅. The DFA
in Figure 5.7 was obtained as follows. First, the start state of D is E(q0) = {q0, q1}.
We will generate the states of D starting from {q0, q1}.

δ({q0, q1},+) = E({q1} ∪ ∅) = {q1}
δ({q0, q1},−) = E({q1} ∪ ∅) = {q1}
δ({q0, q1}, .) = E(∅ ∪ {q2}) = {q2}

δ({q0, q1}, 0 . . . 9) = E(∅ ∪ {q1, q4}) = {q1, q4}

We have obtained three new states: {q1}, {q2} and {q1, q4}. We compute the transi-
tions for each state on all possible inputs. For {q1}:

δ({q1},+) = E(∅) = φ

δ({q1},−) = E(∅) = φ

δ({q1}, .) = E(∅ ∪ {q2}) = {q2}
δ({q1}, 0 . . . 9) = E({q1, q4}) = {q1, q4}

No new states were generated by the above computation. We proceed to compute the
same for {q2}.

δ({q2},+) = E(∅) = ∅
δ({q2},−) = E(∅) = ∅
δ({q2}, .) = E(∅) = ∅

δ({q2}, 0 . . . 9) = E({q3}) = {q3, q5}

A new state, {q3, q5} was generated and we include it in our computation. For {q1, q4}

δ({q1, q4},+) = E(∅ ∪ ∅) = ∅
δ({q1, q4},−) = E(∅) = ∅
δ({q1, q4}, .) = E({q2} ∪ {q3}) = {q2, q3, q5}

δ({q1, q4}, 0 . . . 9) = E(∅ ∪ ∅) = ∅

A new state, {q2, q3, q5} was generated and we include it in our computation. We
proceed with {q3, q5}

δ({q3, q5},+) = E(∅ ∪ ∅) = ∅
δ({q3, q5},−) = E(∅ ∪ ∅) = ∅
δ({q3, q5}, .) = E(∅ ∪ ∅) = ∅

δ({q3, q5}, 0 . . . 9) = E({q3} ∪ ∅) = {q3, q5}
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Finally

δ({q2, q3, q5},+) = E(∅ ∪ ∅ ∪ ∅) = ∅
δ({q2, q3, q5},−) = E(∅ ∪ ∅ ∪ ∅) = ∅
δ({q2, q3, q5}, .) = E(∅ ∪ ∅ ∪ ∅) = ∅

δ({q2, q3, q5}, 0 . . . 9) = E({q3} ∪ {q3} ∪ ∅) = {q3, q5}
Lemma 5.1. E(E(q)) = E(q)

Proof. Let E(q) = {q, p1, p2, . . . , pn}. Then E(E(q)) = E(q) ∪ E(p1) ∪ E(p2) . . . ∪
E(pn). Clearly E(q) ⊆ E(E(q)). To show that E(E(q)) ⊆ E(q) we pick an arbitrary
element in E(E(q)) and show that it is in E(q). Let s ∈ E(pi) then s is reachable from
pi along a path which contains ε-transitions exclusively, we write this symbolically as
pi

ε s. On the other hand pi ∈ E(q) so q ε pi, therefore q ε s which implies that
s ∈ E(q).

�

Lemma 5.2. Let E = (QE ,Σ,∆, sE , FE) be an ε-NFA. For any R ⊆ QE and
x ∈ Σ∗

E(∆̂(R, x)) = ∆̂(R, x) (5.4)

∆̂(E(R), x) = ∆̂(R, x) (5.5)

Proof. Let x = ya, y ∈ Σ∗, a ∈ Σ. Then

E(∆̂(R, x)) = E
(

∆̂(R, ya)
)

= E

E
 ⋃
p∈∆̂(R,y)

∆(p, a)


= E

 ⋃
p∈∆̂(R,y)

∆(p, a)

 from lemma 5.1

= ∆̂(R, x)

Lemma 5.3. Let E = (QE ,Σ,∆, sE , FE) be an ε-NFA. For any R ⊆ QE and
x, y ∈ Σ∗

∆̂(R, xy) = ∆̂(∆̂(R, x), y) (5.6)

Proof. By induction on | x |.
Basis.

∆̂(R, xε) = ∆̂(R, x)

= E
(

∆̂(R, x)
)

from lemma 5.2

= ∆̂(∆̂(R, x), ε) from definition of ∆̂
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induction step. Suppose that ∆̂(R, xy) = ∆̂(∆̂(R, x), y) and let a ∈ Σ

∆̂(R, xya) = E

 ⋃
p∈∆̂(R,xy)

∆(p, a)


= E

 ⋃
p∈∆̂(∆̂(R,x),y)

∆̂(p, a)

 induction hypothesis

= ∆̂(∆̂(R, x), ya) from definition

Theorem 5.1. A string w is accepted by an ε-NFA E = (QE ,Σ,∆, sE , FE) if and
only if it is accepted by some DFA D = (QD,Σ, δ, sD, FD).

Proof. We need to prove that for any x ∈ Σ∗, δ̂(sD, x) = ∆̂(sE , x). We proceed by
induction on | x |.
Basis.

δ̂(sD, ε) = sD

= E(sE)

= ∆̂(sE , ε)

induction step. Assume that δ̂(sD, x) = ∆̂(sE , x) and let a ∈ Σ.

δ̂(sD, xa) = δ(δ̂(sD, x), a) from definition of δ̂

= δ(∆̂(sE , x), a) induction hypothesis

= ∆̂(∆̂(sE , x), a) from definition of δ

= ∆̂(sE , xa) from lemma 5.3
�

The following is a property that we will use later.

Lemma 5.4. The function ∆̂ commutes with set union: for any sets Ai and x ∈ Σ∗

∆̂(
⋃
i

Ai, x) =
⋃
i

∆̂(Ai, x)

Proof. By induction on |x|.
Basis. From the definition of ε-closure we have

∆̂(
⋃
i

Ai, ε) = E(
⋃
i

Ai) from definition of ∆̂

=
⋃
i

E(Ai) from the definition of E

=
⋃
i

∆̂(Ai, ε)
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Induction step. Assume that ∆̂(
⋃
iAi, x) =

⋃
i ∆̂(Ai, x) for |x| = n and let a ∈ Σ.

∆̂(
⋃
i

Ai, xa) = E

 ⋃
p∈∆̂(

⋃
i Ai,x)

∆(p, a)

 from definition of ∆̂

= E

 ⋃
p∈⋃i ∆̂(Ai,x)

∆(p, a)

 from induction hypothesis

= E

⋃
i

⋃
p∈∆̂(Ai,x)

∆(p, a)

 basic set theory

=
⋃
i

E

 ⋃
p∈∆̂(Ai,x)

∆(p, a)

 definition of E

=
⋃
i

∆̂(Ai, xa)

�

5.6 Closure Properties
The introduction of ε-NFAs makes it much easier to prove the remaining closure
properties of regular languages: concatenation and Kleene start. To illustrate the
power of the method we again prove the closure under the union operation.

5.6.1 Closure under Union
Assume that L1 and L2 are regular languages and N1 = (Q1,Σ,∆1, q1, F1) and
N2 = (Q2,∆2, q2, F2) are ε-NFAs such that L1 = L(N1) and L2 = L(N2). We build
an ε-NFAs N = L(L1 ∪ L2) as shown in Figure 5.8. The construction below provides
a formal proof.
Proof. Define N = (Q,Σ,∆, q0, F ) with

• Q = Q1 ∪Q2 ∪ {q0}. With q0 a new state.

• There are ε-transitions from q0 to q1 and to q2. In other words
E(q0) = {q0, q1, q2}.

• F = F1 ∪ F2.

• ∆(q, a) =

{
∆1(q, a) if q ∈ Q1

∆2(q, a) if q ∈ Q2

TODO show that with the exception of empty string ∆̂(q0, x) = ∆̂(q1, x)
⋃

∆̂(q2, x)

Let x ∈ L1 ∪ L2. There are two identical cases: either x ∈ L1 or x ∈ L2 (or both).
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N1 q1

N2 q2

N

q0

q1

q2

ǫ

ǫ

Figure 5.8: ε-NFA to accept L1 ∪ L2

Assume that x ∈ L1 (the other case is similar).

∆̂(q0, x) = ∆̂(q0, εx)

= ∆̂(∆̂(q0, ε), x)

= ∆̂(E(q0), x) from definition

= ∆̂({q0, q1, q2}, x) by construction

= ∆̂(q0, x) ∪ ∆̂(q1, x) ∪ ∆̂(q2, x) by lemma 5.4
therefore

∆̂(q0, x) ∩ F1 =
(

∆̂(q0, x) ∪ ∆̂(q1, x) ∪ ∆̂(q2, x)
)
∩ F1

6= ∅

Because ∆̂(q1, x) ∩ F1 6= ∅ by definition of x begin accepted by N1.

5.6.2 Closure under Concatenation
Assume that L1 and L2 are regular languages and N1 = (Q1,Σ,∆1, q1, F1) and
N2 = (Q2,∆2, q2, F2) are ε-NFAs such that L1 = L(N1) and L2 = L(N2). We build
an ε-NFAs N = L(L1L2) as shown in Figure 5.9. The construction below provides a
formal proof.

• Q = Q1 ∪Q2.

• For every p ∈ F1, ∆̂(p, ε) = q2.

• F = F2.
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q1

N1

q2

N2

N

q1 q2

ǫ

ǫ

Figure 5.9: ε-NFA to accept L1L2

• ∆(q, a) =


∆1(q, a) if q ∈ Q1 − F1

∆1(q, a) if q ∈ F1 and a 6= ε

∆1(q, a) ∪ {q2} if q ∈ F1 and a = ε

∆2(q, a) if q ∈ Q2

Let w ∈ L2 then we can write w = xy where x ∈ L1 and y ∈ L2.

∆̂(q1, w) = ∆̂(q0, xy)

= ∆̂(∆̂(q1, x), y)

= ∆̂(f, y) f ∈ F1 because x ∈ L1

= ∆̂(f, εy)

= ∆̂(∆̂(f, ε), y) from lemma 5.3

= ∆̂(E(f), y) from definition
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From the definition of ∆ and the fact that f ∈ F1 implies that q2 ∈ ∆(f, ε) and
therefore q2 ∈ E(f). Let S = E − {q2} then we can write E = {q2} ∪ S. Continuing
the derivation above we get

∆̂(q1, w) = ∆̂(S ∪ {q2}, y)

= ∆̂(S, y) ∪ ∆̂(q2, y) from lemma 5.4
therefore

∆̂(q1, w) ∩ F2 =
(

∆̂(S, y) ∪ ∆̂(q2, y)
)
∩ F2

6= ∅

Because ∆̂(q2, y) 6= ∅ by definition of y being accepted by N2.

5.6.3 Closure under Kleene star
Assume that L1 is a regular languages and N1 = (Q1,Σ,∆1, q1, F1) is an ε-NFAs
such that L1 = L(N1). We build an ε-NFAs N = L(L1)∗ as shown in Figure 5.10.
The construction below provides a formal proof.

• Q = Q1 ∪ {q0}.

• q0 is the start state of N .

• F = F1 ∪ {q0}.

• ∆(q, a) =



∆1(q, a) if q ∈ Q1 − F1

∆1(q, a) if q ∈ F1 and a 6= ε

∆1(q, a) ∪ {q1} if q ∈ F1 and a = ε

{q1} if q = q0 and a = ε

∅ if q = q0 and a 6= ε

Proof. If x ∈ L∗1 then we can write x = x1 . . . xn for some n ≥ 0 and xi ∈ L1 for all
i. We will prove that N accepts x by induction on n.
Basis. n = 0 then x = ε and ∆̂(q0, ε) = E(q0) ∩ F 6= ∅ because q0 ∈ E(q0) and
q0 ∈ F .
Induction hypothesis. Assume that x = x1 . . . xn and ∆̂(q0, x) ∩ F 6= ∅.
Induction step. Let f ∈ ∆̂(q0, x) ∩ F be an arbitrary accepting state and let
S = ∆̂(q0, x)− {f}. Then

∆̂(q0, x1x2 . . . xn+1) = ∆̂(∆̂(q0, x1 . . . xn), xn+1)

= ∆̂(S ∪ {f}, xn+1)

= ∆̂(S, xn+1) ∪ ∆̂(f, xn+1) by lemma 5.4
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Now ∆̂(f, xn+1) = ∆̂(∆̂(f, ε), xn+1) = ∆̂(E(f), xn+1) and by construction
q1 ∈ E(f) for all f ∈ F1 therefore ∆̂(q1, xn+1) ⊆ ∆̂(f, xn+1). Continuing the
derivation above we get

∆̂(q0, x1x2 . . . xn+1) = ∆̂(S, xn+1) ∪ ∆̂(f, xn+1)

⊇ ∆̂(q1, xn+1) from discussion above
∩ F1 6= ∅ because xn+1 ∈ L1

∩ F 6= ∅ because F = F1 ∪ {q0}

q1

N1

N

q1
ǫ

ǫ

ǫ

Figure 5.10: ε-NFA to accept L∗

Note 5.1. Given a DFA that recognizes L one might be tempted to construct a DFA
that recognizes L∗ by linking the final states to the start state by an ε-transition and
make the start state accepting. In fact this does not always work. Consider the NFA
that recongnizes L = {anb |n ≥ 0} shown below in Figure 5.11.

q0 q1

a

b

Figure 5.11: ε-NFA to accept anb

If we use the above strategy we get the result shown in Figure 5.12 which is obviously
wrong.
The NFA in Figure 5.12 actually accepts {a, b}∗. The proper construction is shown in
Figure 5.13.
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q0 q1

a

b

ǫ

Figure 5.12: WRONGε-NFA to accept (anb)∗

q0 q1 q2

a

ǫ b

ǫ

Figure 5.13: CORRECTε-NFA to accept (anb)∗
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Lecture 6

Regular Expressions

6.1 Introduction
Regular expressions are similar to arithmetic expression. In the same way that
arithmetic expression are built from numbers and operators, regular expression are
built from strings and operators. The result of an arithmetic expression is a number
while the result of a regular expression is a language. As an example the regular
expression

(0 + 1)0∗

produces the language L = {w | w starts with a 0 or 1 followed by any number of 0s}.

6.2 Formal Definition of a Regular Expression
R is said to be a regular expression if one of the following is true

1. R = a for some a ∈ Σ. In this case L(R) = {a}.

2. R = ε. L(R) = {ε}.

3. R = φ. L(φ) = φ.

4. R = R1 ∪R2 where R1 and R2 are regular expressions.
L(R) = L(R1 ∪R2) = L(R1) ∪ L(R2).

5. R = R1R2 where R1 and R2 are regular expressions.
L(R) = L(R1R2) = L(R1)L(R2).

6. R = R∗1 where R1 is a regular expressions. L(R∗1) = (L(R1))∗.

Example 6.1. Write a regular expression for the set of strings that consist of
alternating 0s and 1s.
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First we note that any string consisting of alternating 0s and 1s should have as a
substring zero or more repetitions of the string 01. There are four possibilities: (01)∗,
0(10)∗, 1(01)∗, (10)∗. Therefore the resulting regular expression is

(01)∗ + 0(10)∗ + 1(01)∗ + (10)∗

Another approach would be to treat the set of alternating 0s and 1s as (01)∗ with
optional 1 to the left and optional 0 to the right which gives an alternative regular
expression for the same language

(1 + ε)(01)∗(0 + ε)

We can see why the two expressions are the same by expanding the last expression

(1 + ε)(01)∗(0 + ε) = (1(01)∗ + (01)∗) (0 + ε)

= 1(01)∗0 + (01)∗0 + 1(01)∗ + (01)∗

Now since 1(01)∗0 = (10)∗ and (01)∗0 = 0(10)∗ we get

(1 + ε)(01)∗(0 + ε) = (10)∗ + 0(10)∗ + 1(01)∗ + (01)∗

Example 6.2. The following are examples of regular expressions over the alphabet
Σ = {0, 1}.
• L = {w : w contains exactly one 1}. The strings in L will have the form

10 . . . 0, 0 . . . 01, or 0 . . . 010 . . . 0 without forgetting that 1 by itself is also in
the language. Thus the regular expression we are looking for is 0∗10∗.

• Σ∗1Σ∗ = {w : w contains at least one 1}.
• Σ∗001Σ∗ = {w : w contains 001 as substring}. In fact we can generalize and

say if s is a string and we need a regular expression for all the strings w that
have s as a substring, it is Σ∗sΣ∗.

• L = {w ∈ {a, b}∗ : w starts and ends with the same symbol }. The string can
be of the two forms a . . . a or . . .

¯
b therefore it is the union of two regular

expression (a{a, b}∗a) ∪ (b{a, b}∗b). There are two exceptions: the strings a
and b also start and end with the same symbol. Thus the expression is
(a{a, b}∗a) ∪ (b{a, b}∗b) ∪ a ∪ b.

6.3 Equivalence of RE and DFA
Even though Finite Automata and Regular Expressions are two different ways of
dealing with languages, in fact they are equivalent. In this chapter we show that for
any DFA we can construct a Regular Expression that describes the same language, we
call this from DFA to Regular Expressions. The reverse, from Regular Expressions to
DFA, is left to the next lecture.
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6.4 Generalized Non Deterministic Finite Automata
A Generalized Nondeterministic Finite Automaton GNFA is simply an NFA except
that the labels of the transitions are regular expressions instead of symbols in an
alphabet and ε. The GNFA reads a string or a sequence of symbols in one step instead
of reading one symbol at a time as in an NFA. Figure 6.1 shows an example GNFA.
For example, all strings matched by the regular expression ab∗, will make the GNFA
go from state q0 to state q1.
Formally we define a GNFA as a 5-tuple G = (Q,Σ, δ, qstart, qaccept) with

1. Q is a finite set of states.

2. Σ is the alphabet.

3. The transition function δ : (Q− qaccept)× (Q− qstart)→ R.

4. qstart is the start state and qaccept is the accept state.

From the above definition we deduce the following properties:

• There is only a single accept state.

• Because the domain of δ is (Q− qaccept)× (Q− qstart) then

– There is a transition from the any state (except qaccept) to all (except
qstart) other states. This includes a transition from a state to itself.

– There is no transition from any state to the start state.

– There is no transition from the accept state to any other state.

A GNFA accepts a string w ∈ Σ∗ if w = w1w2 . . . wn where wi ∈ Σ∗ and there exists
states q0, q1, . . . , qn such that

1. q0 = qstart and qn = qaccept.

2. wi ∈ L(δ(qi−1, qi)). In other words, the substring wi is ”matched” by the
regular expression labeling the arrow from qi to qj .

6.4.1 Converting a DFA to a GNFA
Given an arbitrary DFA D = (QD,Σ, δD, q0, F ) can be converted to a GNFA
G = (QG,Σ, δG, qstart, {qaccept}) as follows

1. Add a new start state qstart with the ε-transition from qstart to q0. This is to
make sure that there is no transition coming into the start state.

2. Add a new accept state qaccept with ε-transitions from all qf ∈ F to qaccept.
This is to make sure that there is a single accept state and no transition coming
out of the accept state.
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q0

q1

q2

q3

aa

ab

ab∗

φ

b

a∗(aa)∗

ab+ ba

b∗

Figure 6.1: Example GNFA

3. Items 1 and 2 imply that QG = QD ∪ {qstart} ∪ {qaccept}.

4. If for any two states q, p ∈ Q there is no a ∈ Σ such that δD(q, a) = p then
δG(q, p) = ∅. Note that in a GNFA a transition labeled ∅ cannot be used since
L(∅) = ∅.

5. Multiple transitions from state q to state p are replaced by a single transition
whose label is the union of all the previous labels.

Example 6.3. As an example, we show in Figure 6.2 a conversion from a DFA to an
GNFA.

q0 q1 q2

b a, b

a a

b

(1)

S q0 q1 q2

A

b a, b

ǫ ǫ

ǫ a a

b

(2)

Figure 6.2: From DFA to GNFA

6.4.2 From GNFA to Regular Expression
We build a regular expression from a GNFA recursively by reducing the number of
states in the GNFA by one each step until we arrive at a GNFA with only two states:
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q0 q1 q2

b a, b

a a

b

(1)

s q0 q1 q2

A

b a, b

ǫ ǫ

ǫ a a

b

(2)

s q0 q2

A

b

ab

a, b

ǫ
a

aaǫ

(3)

s q0

A

b ∪ ab

ǫ ∪ a

ǫ

(4)

s A
(b ∪ ab)∗(ǫ ∪ a)

(5)

Figure 6.3: From GNFA to RegExp 1

the start and accept states. The label on the transition from the start to the accept state
is the equivalent regular expression. Given a GNFA with k states we construct an
equivalent GNFA with k − 1 elements by removing an arbitrary state and modifying
the transition so that the same language is recognized. Let
G = (Q,Σ, δ, qstart, qaccept) be a GNFA and qrip be the removed state. Construct a
new GNFA G′(Q′,Σ, δ′, qstart, qaccept) having one state less, with Q′ = Q− {qrip}
and for every qi, qj , δ′(qi, qj) takes into account the missing state qrip as follows:

δ′(qi, qj) = δ(qi, qj) ∪ δ(qi, qrip)δ(qrip, qrip)∗δ(qrip, qj) (6.1)

Obviously many qi, qj are such that δ(qi, qrip) = ∅ or δ(qrip, qj) = ∅, i.e. qi and qrip
are not ”connected” or qrip and qj are not ”connected”. In all those cases
δ′(qi, qj) = δ(qi, qj).
Figure 6.3 shows an example of the construction described above. The initial DFA
recognizes all the strings that do not contain aa as a substring. Another example that
recognizes all strings containing at least one b is shown in Figure 6.4. It should be
noted that in both examples the transitions labeled with the regular expression ∅ are
not shown.

Theorem 6.1. The GNFAs G and G′ as defined above are equivalent.

Proof. To show that G and G′ are equivalent we need to show that any string accepted
by one is accepted by the other. Let w ∈ Σ∗ be string accepted by G. By the
definition of acceptance, we can write w = w1w2 . . . wn, wi ∈ Σ∗, and there exists
q0, q1, . . . , qn all in Q such that wi ∈ L(δ(qi−1, qi) for all i. If qrip /∈ {q0, q1, . . . , qn}
then q0, q1, . . . , qn ∈ Q′ and δ′(qi−1, qi) = δ(qi−1, qi), therefore G′ accepts w. The
other case, suppose that qrip ∈ {q0, q1, . . . , qn}. Let qrip = qi for some i. We

Theory of Computation 55 c©Hikmat Farhat



q0 q1

a a, b

b

(1)

s q0

q1a

a

a ∪ b

ǫ

b

ǫ

(2)

s q0

a

a

ǫ

b(a ∪ b)∗

(3)

s

a

a∗b(a ∪ b)∗

(4)

Figure 6.4: From GNFA to RegExp 2

consider the most general case where wi+1 = wi+2 = . . . = wi+k and
qi = qi+1 = . . . = qi+k (i.e. state qi has a self transition that consumes wi+1 k times).
Clearly k could be zero.
Figure 6.5 illustrates this case. Since w is accepted by G then the following is true

wj ∈ L(δ(qj−1, qj)) 0 ≤ j < i

wi ∈ L(δ(qi−1, qi)

wi+j ∈ L(δ(qi, qi)) 0 ≤ j ≤ k (6.2)
wi+k+1 ∈ L(δ(qi, qi+k+1))

wj ∈ L(δ(qj−1, qj)) i+ k + 1 < j ≤ n

In the construction of G′, only the state qi = qrip is removed and therefore the first
and last lines in (6.2) do not change. This means that δ′(qj−1, qj) = δ(qj−1, qj), and
wj ∈ L(δ′(qj−1, qj))for 0 ≤ j < i and i+ k + 1 < j ≤ n. The remaining three lines
in (6.2) are removed and replaced, according to the transition function defined in
(6.1), by:

δ′(qi, qi+k+1) = δ(qi, qi+k+1) ∪ δ(qi, qi)δ(qi, qi)∗δ(qi, qi+k+1)

Now we show that w is accepted by G′. From (6.2) we have

wiwi+1wi+2 . . . wi+kwi+k+1 ∈ L(δ(qi−1, qi))L(δ(qi, qi))
kL(δ(qi, qi+k+1)
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qi−1 qi qi+k+1

δ(qi, qi)

δ(qi−1, qi) δ(qi, qi+k+1)

qi−1 qi qi+k+1

wk
i+1

wi wi+k+1

Figure 6.5: Matching the string wiwki+1wi+k+1

Using the rules of regular expressions we get

wiwi+1wi+2 . . . wi+kwi+k+1 ∈ L(δ(qi−1, qi)δ(qi, qi)
kδ(qi, qi+k+1))

∈ L(δ(qi−1, qi)δ(qi, qi)
∗δ(qi, qi+k+1) ∪ δ(qi−1, qi+k+1))

∈ L(δ′(qi−1, qi+k+1))

Combining the above with the fact that wj ∈ L(δ′(qj−1, qj))for 0 ≤ j < i and
i+ k + 1 < j ≤ n then for w1w2 . . . wn−k there exists states q0, q1, . . . , qn−k in G′

such that wj ∈ L(δ′(qj−1, qj)), 0 ≤ j ≤ n− k, therefore G′ accepts w.

6.5 From Regular Expression to NFA
We show that given a regular expression we can construct an NFA that accepts the
same language. We will prove the equivalence by considering all the cases of a regular
expression in the formal definition. Let R be a regular expression.

1. R = a for some a ∈ Σ. The NFA N = ({q1, q2},Σ, δ, q1, {q2}) with
δ(q1, a) = {q2} and δ(q, c) = ∅ for q 6= q1 or c 6= a, recognizes L(R) = {a}.

2. R = ε. The NFA N = ({q1},Σ, δ, q1, {q1}) with δ(q, c) = ∅ for all q and c,
recognizes L(R) = {ε}.

3. R = ∅. The NFA N = ({q1},Σ, δ, q1, ∅) with δ(q, c) = ∅ for all q and c,
recognizes L(R) = ∅

4. R = R1 ∪R2 or R = R1R2 or R = R∗1. We build an NFA for R1 and another
NFA for R2 and then combine them by using the construction used in proving
that the regular languages are closed under union, concatenation and Kleene
star.
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aa

bb

a ǫ bab

ǫ

ǫ

a ǫ b

a

ab ∪ a

ǫ ǫ

ǫ

a ǫ b

a

ǫ

ǫ

(ab ∪ a)∗

Figure 6.6: NFA equivalent to (a ∪ ab)∗

Example 6.4. Convert (ab ∪ a)∗ to an NFA.

The solution is shown in Figure 6.6.

Example 6.5. Convert (a ∪ b)∗ab to an NFA.

The solution is shown in Figure 6.7.
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bb

ǫ

ǫ

a

b

a ∪ b

a ǫ bab

ǫ ǫ

ǫ

a

b

ǫ

ǫ

(a ∪ b)∗

a ǫ b

ǫ
ǫ

ǫ

ǫ ǫ

ǫ

a

b

ǫ

ǫ

(a ∪ b)∗ab

Figure 6.7: NFA equivalent to (a ∪ b)∗ab

Theory of Computation 59 c©Hikmat Farhat



Theory of Computation 60 c©Hikmat Farhat



Lecture 7

Non-Regular Languages

So far we have seen that the class of regular languages can be described by DFA’s,
NFA’s, ε-NFA’s and regular expressions. Not all languages, however, are regular. The
following is a powerful result that can be used as a tool to show that certain language
are not regular.

s p

x
y

z

Figure 7.1: If the input is long enough a state is visited more than once, in this case p

7.1 Pumping Lemma for Regular Languages
Theorem 7.1 (Pumping Lemma). Let L be a regular language. There exists a
constant n such that for every w ∈ L and |w| ≥ n we can write w = xyz with the
following properties:

1. y 6= ε

2. |xy| ≤ n

3. xykz ∈ L, ∀k ≥ 0

Proof idea: The basic idea is that a DFA has a finite number of states, n, and when
the DFA computes on any string of length bigger than n, it must visit certain states
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more than once. The idea is illustrated in Figure 7.1 where the state p can be visited
more than once. This means that if xyz is accepted as shown in the figure any string
xykz will be accepted for any k, including k = 0, (i.e. xz is accepted). �

Proof. Because L is regular then there exists a DFA M = (Q,Σ, δ, s, F ) that
recognizes L, i.e. L = L(M). Let n = |Q| and consider a string w ∈ L with
|w| = m ≥ n. We can write w = w1w2 . . . wn and define the states
pi = δ̂(s, w1w2 . . . wi), in particular p0 = δ̂(s, ε) = s. Since w has m ≥ n symbols
then it ”visits” m+ 1 states: s = p0, p1, . . . , pm. Now M has n states so by the
pigeonhole principle there exists i < j ≤ n such that
pi = δ̂(s, w1 . . . wi) = pj = δ̂(s, w1 . . . wiwi+1 . . . wj). This means that state pi is
visited at least twice. Let x = w1 . . . wi, y = wi+1 . . . wj and z = wj+1 . . . wm. First,
we observe that since the shortest w has size n i.e. w = w1 . . . wn this makes δ̂(s, w)

visit at least n+ 1 states. In other words δ̂(s, w1 . . . wn−1) visits all the states and
thus i is strictly less than j and subsequently y 6= ε. We also have

pj = δ̂(s, w1, . . . , wi, wi+1, . . . wj)

= δ̂(s, xy)

= δ̂(δ̂(s, x), y)

= δ̂(pi, y)

pj = δ̂(s, xy) = δ̂(s, x) = pi (7.1)

From the discussion above it is clear that j ≤ n and therefore |xy| = |w1 . . . wj | ≤ n
For property 3 we use the fact that for any q ∈ Q and x, y ∈ Σ∗,
δ̂(q, xy) = δ̂(δ̂(q, x), y) to get

δ̂(s, xykz) = δ̂(δ̂(s, xyk), z)

= δ̂(δ̂(δ̂(s, xy), yk−1), z)

= δ̂(δ̂(δ̂(s, x), yk−1), z) from eq (7.1)

= δ̂(δ̂(s, xyk−1), z)

= δ̂(s, xyk−1z)

Therefore for any k ≥ 0 we can iterate the above equality to get
δ̂(s, xykz) = δ̂(s, xyz). Therefore xykz ∈ L for any k ≥ 0. �

Example 7.1. The language L = {w ∈ {0, 1}∗ : w = 0p1p} is not regular.

Proof. Let n be the pumping length of L and s = 0n1n be a string in L. Since |s| ≥ n
then by the pumping lemma we can write s = xyz with |xy| ≤ n which in this case
means that x and y are all 0’s. We can write x = 0i, y = 0j and z = 0n−i−j1n. Again
by the pumping lemma xykz ∈ L and in particular xyyz ∈ L and therefore
0n+j1n ∈ L which leads to a contradiction.

�
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Example 7.2. The language
L = {w ∈ {0, 1}∗ : w has an equal number of 0’s and 1’s} is not regular.

Proof. The proof is the same as example 7.1. Let n be the pumping length of L and
consider the string s = 0n1n. We can write s = xyz where by the pumping lemma x
and y are all 0’s and we can pump y therefore xyyz ∈ L but xyyz has more 0’s than
1’s which is a contradiction.

�

Example 7.3. The language L = {w ∈ {0, 1}∗ : |w| is prime} is not regular.

Proof. Assume that L is regular and let p be the pumping length. Let w ∈ L with
|w| = n ≥ p. Since |w| = n ≥ p then by the pumping lemma we can write w = xyz
with |xyz| = n and xykz ∈ L for any k. In particular choose k = n+ 1 then
xyn+1z ∈ L and |xyn+1z| = |xyz|+ n|y| = n+ n|y| = n(1 + |y|) but since |y| > 1
and n > 1 this is a contradiction because xyn+1z ∈ L and its length is not prime.

�

Example 7.4. The language L = {w ∈ {0, 1}∗ : |w| = n2} is not regular.

Proof. Assume that L is regular and let p be the pumping length of L and choose
w ∈ L with |w| = p2. By the pumping lemma we can write w = xyz with |xy| ≤ p.
Consider the string xyyz ∈ L by the pumping lemma. Now since y 6= ε and |xy| ≤ p
then p2 < |xyyz| ≤ p2 + p < (p+ 1)2. Therefore |xyyz| is not a square and
xyyz /∈ L which is a contradiction.

�

Example 7.5. The language L = {w ∈ {0, 1}∗ : w = wR} is not regular.

Proof. Assume that L is regular and let p be the pumping length of L. Let w = 0p10p

which clearly is in L. By the pumping lemma we can write w = xyz and |xy| ≤ p
therefore x and y are all 0’s. On the other hand xyyz should be in L by the pumping
lemma but since y is all 0’s then xyyz contains more 0’s to the ”left” of 1 than to the
right which is a contradiction.

�

Example 7.6. The language L = {w ∈ {a, b}∗ : w = aibj , i < j} is not regular.

Proof. Assume that L is regular and let p be the pumping length of L. Consider
w = apbp+1 which is clearly in L. By the pumping lemma we can write w = xyz
with |xy| ≤ p therefore x and y are all a′s. On the other hand xyyz should be in L,
and y 6= ε. Since y is all a′s then xyyz contains more than p a′s, i.e. greater or equal
number of b′s which is a contradiction.

�
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Lecture 8

DFA Minimization

8.1 Introduction

We had enough experience with DFAs to realize that on many occasions different
DFA, usually having a different number of states, recognize the same language.
Alternatively, sometimes we can simplify a DFA by removing from it ”unnecessary”
states. We already encountered one kind of simplification when we removed
”inaccessible” states. In addition to the removal of ”unnecessary” states, the question
is : given a language L and a DFA M such that L = L(M), is there a minimum
number of states that M should have? In this lecture we will answer the question by
showing how to minimize the number of states of a given DFA. To do so we first
introduce the concept of equivalent states then use this equivalence to construct a
”quotient” DFA for the original DFA.

8.2 Equivalent States

Definition 8.1. Let M = (Q,Σ, δ, q0, F ) be a DFA. Two states p and q are said to be
equivalent, denoted p ∼ q, if for every x ∈ Σ∗, δ̂(p, x) ∈ F ⇔ δ̂(q, x) ∈ F .

If two states (p, q) are not equivalent we say they are distinguishable and we write
p � q. If p � q then ∃ x such that δ̂(p, x) ∈ F and δ̂(q, x) /∈ F or δ̂(p, x) /∈ F and
δ̂(q, x) ∈ F . For the remainder of this lecture when we say that (p, q) are
distinguishable we assume, without loss of generality, that ∃ x such that δ̂(p, x) ∈ F
and δ̂(q, x) /∈ F .

Lemma 8.1. If p ∼ q then δ(p, a) ∼ δ(q, a) for all a ∈ Σ. Equivalently, if for some
a ∈ Σ we have δ(p, a) � δ(q, a) then p � q.

Proof. Assume that p ∼ q and let y be an arbitrary string, then
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q0

q1

q2

q3

q4

q5 a, b

a

b

a

a

a, b

a, b

bb

Figure 8.1: DFA containing equivalent states used in Example 8.1

δ̂(δ(p, a), y) ∈ F ⇔ δ̂(p, ay) ∈ F
⇔ δ̂(q, ay) ∈ F because p ∼ q
⇔ δ̂(δ(q, a), y) ∈ F hw 2

Thus δ(p, q) ∼ δ(q, a).
The following algorithm discovers all distinguishable states recursively.

Marking Algorithm
Basis (step 1). If p ∈ F and q /∈ F then (p, q) are marked as distinguishable.
Induction step (step 2). If the pair (r, s) are marked as distinguishable and
δ(p, a) = r and δ(q, a) = s for some a ∈ Σ then the pair (p, q) are marked as
distinguishable. This is true because if (r, s) are distinguishable then ∃ x such that
δ̂(r, x) ∈ F and δ̂(s, x) /∈ F and therefore the string ax distinguishes (p, q):
δ̂(p, ax) = δ̂(δ(p, a), x) = δ̂(r, x) ∈ F and δ̂(q, ax) = δ̂(δ(q, a), x) = δ̂(s, x) /∈ F .

Example 8.1. Use the marking algorithm to find all equivalent states for the DFA in
Figure 8.1.

Initially the table is empty.

q0

q1

q2

q3

q4

q5

Table 8.1: Initial marking for DFA in Figure 8.1

Now we fill all the pairs in which one of them is accepting
The first pass of the algorithm is as follows
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q0

x q1

x q2

x x q3

x x q4

x x x q5

Table 8.2: Pass one of marking algorithm for Figure 8.1

• Pair {q1, q2}. We have

– {q1, q2} a→ {q3, q4} and pair {q3, q4} is not marked so do not mark
{q1, q2}.

– {q1, q2} b→ {q3, q4} and pair {q3, q4} is not marked so do not mark
{q1, q2}.

• Pair {q0, q3}. We have

– {q0, q3} a→ {q1, q5} and pair {q1, q5} is not marked so do not mark
{q0, q3}.

– {q0, q3} b→ {q2, q5} and pair {q2, q5} is not marked so do not mark
{q0, q3}.

• Pair {q0, q4}. We have

– {q0, q4} a→ {q1, q5} and pair {q1, q5} is not marked so do not mark
{q0, q4}.

– {q0, q4} b→ {q2, q5} and pair {q2, q5} is not marked so do not mark
{q0, q4}.

• Pair {q3, q4}. We have

– {q3, q4} a→ {q5, q5} and pair {q5, q5} is not marked so do not mark
{q0, q4}.

– {q3, q4} b→ {q5, q5} and pair {q5, q5} is not marked so do not mark
{q0, q4}.

• Pair {q1, q5}. We have

– {q1, q5} a→ {q3, q5} and pair {q3, q5} is marked so we mark {q1, q5}.

• Pair {q2, q5}. We have

– {q2, q5} a→ {q4, q5} and pair {q4, q5} is marked so we mark {q2, q5}.

After this pass the table looks like in
Another pass
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q0

x q1

x q2

x x q3

x x q4

x x x x x q5

Table 8.3: Pass two of the marking algorithm for Figure 8.1

• Pair {q1, q2}. We have

– {q1, q2} a→ {q3, q4} and pair {q3, q4} is not marked so do not mark
{q1, q2}.

– {q1, q2} b→ {q3, q4} and pair {q3, q4} is not marked so do not mark
{q1, q2}.

• Pair {q0, q3} we have

– {q0, q3} a→ {q1, q5} and pair {q1, q5} is marked so we mark {q0, q3}.

• Pair {q0, q4} we have

– {q0, q4} a→ {q1, q5} and pair {q1, q5} is marked so we mark {q0, q4}.

After that no other state is marked and the final table is shown below. This means that
q1 ∼ q2 and q3 ∼ q4.

q0

x q1

x q2

x x x q3

x x x q4

x x x x x q5

Table 8.4: Final result for DFA shown in Figure 8.1

q0 q1 q3 q5 a, b
a, b a, b a, b

Figure 8.2: Resulting DFA equivalent to DFA in 8.1

Example 8.2. Use the marking algorithm to find all equivalent states for the DFA in
Figure 8.3.
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It should be noted that ∼ is reflexive and symmetric therefore the table will be
symmetric. Since q2 is the only accepting state then q2 is not equivalent (is
distinguishable) to any other state. Therefore, all pairs containing q2 are marked. Now
starting from the fact that (q2, q7) are distinguishable and δ(q4, 0) = q7 and
δ(q5, 0) = q2 then (q4, q5) are distinguishable. Continuing with our marking
algorithm we obtain the result shown in Table 14.1.

q0

x q1

x x q2

x x x q3

x x x q4

x x x x q5

x x x x x x q6

x x x x x x q7

Table 8.5: Marking of distinguishable states for DFA in Figure 8.4

q0 q1 q2 q3

q4 q5 q6 q7

1

0

0 1

0

0

1 1 0

1

0

1 0 0
11

Figure 8.3: DFA containing equivalent states for example 8.2

Example 8.3. Use the marking algorithm to find all equivalent states for the DFA in
Figure 8.4.

First, q0 � q4 , because q0 is accepting and q4 is not, with δ(q3, a) = q0 and
δ(q4, a) = q4 leads to q3 � q4. The same reasoning leads to q1 � q3. Also q2 � q4

because q2 is accepting and q4 is not, together with δ(q1, b) = q2 and δ(q5, b) = q4

leads to q1 � q5. The same reasoning leads also to q1 � q4. The final result, shown in
Table 14.2, is that q0 ∼ q2 and q3 ∼ q5. This allows us to simplify the DFA in Figure
8.5 to the one shown in Figure
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q0 q1 q2

q3 q4 q5

a, b

a
b

a

b a

b

b

a b a

Figure 8.4: DFA containing equivalent states for example 8.3

q0

x q1

x q2

x x x q3

x x x x q4

x x x x q5

Table 8.6: Marking of distinguishable states for DFA in Figure 8.4

Theorem 8.1. A pair (p, q) is distinguishable if and only if it is discovered by the
marking algorithm.

Proof. First we show that if p � q then the pair (p, q) is marked by the marking
algorithm. If p � q then ∃ x such that δ̂(p, x) ∈ F and δ̂(q, x) /∈ F . We prove by
induction on |x| that (p, q) is marked .
Basis. |x| = 0 then δ̂(p, ε) = p ∈ F and δ̂(q, ε) = q /∈ F therefore (p, q) is marked by
step 1 of the marking algorithm.
Induction hypothesis. Assume that all pairs distinguishable by strings x of length |x|
are marked by the algorithm.
Induction step. Suppose that the string ax, a ∈ Σ, distinguishes (p, q). Then by
definition δ̂(p, ax) ∈ F and δ̂(q, ax) /∈ F . This implies that δ̂(δ(p, a), x) ∈ F and
δ̂(δ(q, a), x) /∈ F thus δ(p, a) and δ(q, a) are marked by the induction hypothesis.
Finally, step 2 of the algorithm marks (p, q) because δ(p, a) and δ(q, a) are marked.
Now we show that if (p, q) are marked by the algorithm then p � q. The proof is by
induction on the number of iterations of the marking algorithm.
Basis. (p, q) are marked by the first iteration implies that p ∈ F and q /∈ F , thus
p � q because δ(p, ε) ∈ F and δ(q, ε) /∈ F .
Induction hypothesis Assume that all pairs (p, q) marked by iteration n are
distinguishable.
Induction step. If (p, q) is marked by the algorithm on iteration n+ 1 then ∃a ∈ Σ
such that (δ(p, a), δ(q, a)) was marked on step n. By the induction hypothesis
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q0 q1

q3 q4

a, b

a

b

b a

b

a

Figure 8.5: DFA equivalent to the DFA in Figure 8.4

δ(p, a) � δ(q, a) thus p � q by lemma 8.1.

8.3 Quotient Construction
The relation ∼ is an equivalence relation because it is reflexive, symmetric and
transitive. Therefore ∼ partitions Q into disjoint equivalence classes. We use the
following notation for the equivalence classes: [p] = {q : q ∼ p}. We take advantage
of equivalent classes and their properties to define a new kind of automaton: the
quotient automaton. As we will see later the quotient DFA will be the minimal DFA
we are seeking. Given a DFA M = (Q,Σ, δ, s, F ) we construct the quotient DFA,
sometimes denoted by M/ ∼, M ′ = (Q′,Σ, δ′, s′, F ′) as follows:

1. Q′ = {[q] : q ∈ Q}.
2. δ′([q], a) = [δ(q, a)].

3. s′ = [s].

4. F ′ = {[q] : q ∈ F}.
The first thing we have to do is to show that δ′ given in 2 is well defined. In other
words, suppose that q ∈ [p] is δ′([p], a) = δ′([q], a) as it should? The answer is yes
and the proof is in lemma 8.1. q ∈ [p] implies that q ∼ p and by lemma 8.1
δ(p, a) ∼ δ(q, a) therefore [δ(p, a)] = δ′([p], a) = δ′([q], a) = [δ(q, a)].

Lemma 8.2. For all x ∈ Σ∗, δ̂′([p], x) = [δ̂(p, x)].

Proof. By induction on |x|.
Basis. x = 0.

δ̂′([p], ε) = [p] def. δ̂′

= [δ̂(p, ε)] def. δ̂
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Induction step. Assume δ̂′([p], x) = [δ̂(p, x)] then

δ̂′([p], xa) = δ′(δ̂′([p], x), a) def. δ̂′

= δ′([δ̂(p, x], a) ind. hyp.

= [δ(δ̂(p, x), a)] def. δ′

= [δ̂(p, xa)] def. δ̂

Lemma 8.3. If q ∈ F ⇔ [q] ∈ F ′.

Proof. The ”if” part follows directly from the definition of F ′. The ”only if”: assume
that [q] ∈ F ′ then by the definition of F ′, ∃p, p ∼ q and p ∈ F . But, p ∼ q implies
that δ̂(q, x) ∈ F ⇔ δ̂(p, x) ∈ F . Replacing x by ε in the last relation leads to
δ̂(p, ε) = p ∈ F ⇔ q = δ̂(q, ε) ∈ F therefore q ∈ F .

Theorem 8.2. L(M) = L(M/ ∼).

Proof.

x ∈ L(M/ ∼)⇔ δ̂′(s′, x) ∈ F ′ def. of acceptance

⇔ δ̂′([s], x) ∈ F ′ def. of s′

⇔ [δ̂(s, x)] ∈ F ′ lemma 8.2

⇔ δ̂(s, x) ∈ F lemma 8.3
⇔ x ∈ L(M) def. of acceptance

8.4 Nondeterminisitic Automata
Can we minimize nondeterministic automata? The answer is yes but the minimal
automaton is not necessarily unique as the figure below shows.
In this chapter we show the correspondence between a certain type of equivalence
relations, called Myhill-Nerode relations and DFAs. Namely, given a DFA we can
construct a Myhill-Nerode relation and vice versa, given a Myhill-Nerode relation we
can construct a corresponding DFA.
Recall that a given language L (regular or not) defines an equivalence relation
x ∼ y ⇒ (x ∈ L⇔ y ∈ L). This relation partitions Σ∗ into two partitions x ∈ L and
x /∈ L.

8.5 Myhill-Nerode Relations
Definition 8.2. A relation R1 is said to refine another relation R2 if R1 ⊆ R2 when
R1 and R2 are regarded as sets of pairs. We also say that R1 is finer than R2 and R2

is coarser than R1.
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p0 p1

a

a

a

a

Figure 8.6: Two minimal NFAs for a+ that are not isomorphic

Definition 8.3. Given L ⊆ Σ∗ a regular language a Myhill-Nerode relation is an
equivalence relation ≡ over Σ∗ with the following properties:

1. It is right congruent: x ≡ y ⇒ xa ≡ ya ,∀a ∈ Σ.

2. ≡ refines L. This means that if x ≡ y then either both are in L or none of them
is in L. ∀ x, y ∈ Σ∗

x ≡ y ⇒ (x ∈ L⇔ y ∈ L)

3. ≡ has a finite number of equivalence classes (finite index).

The equivalence class of x ∈ Σ∗ is denoted b [x]≡ = {y ∈ Σ∗ |x ≡ y}.

8.6 From Myhill-Nerode to DFA

Given a Myhill-Nerode relation ≡ we can construct the automaton
M≡ = (Q,Σ, δ, s, F ) with

• Q = {[x] |x ∈ Σ∗}

• s = [ε]

• δ([x], a) = [xa]

• F = {[x] |x ∈ L}

Note that δ([x], a) is well defined because if x ∈ [x] and y ∈ [x] then from the
congruence defined in property 1 we have δ([x], x) = [xa] = [ya] = δ([y], a).

Lemma 8.4. δ̂([x], y) = [xy].
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Proof. By induction on |y|.
basis:

δ̂([x], ε) =[x] def. of δ̂
=[xε]

induction step:

δ̂([x], ya) =δ(δ̂([x], y), a) def. of δ̂
=δ([xy], a) hyp.
=[xya] def. of δ

Theorem 8.3. L(M≡) = L

proof.

x ∈ L(M)⇔ δ̂(s, x) ∈ F def. of acceptance

⇔ δ̂([ε], x) ∈ F def. of s
⇔ [εx] ∈ F lemma 8.4
⇔ [x] ∈ F
⇔ x ∈ L def. of F

8.7 From DFA to Myhill-Nerode
Let M = (Q,Σ, δ, s, F ) be a DFA such that L(M) = L and define the equivalence
relation ≡M on Σ∗ with

x ≡M y ⇔ δ̂(s, x) = δ̂(s, y)

Theorem 8.4. ≡M is a Myhill-Nerode relation.

First it is easily shown that ≡M is an equivalence relation (reflexive,symmetric and
transitive). The remaining properties

1. ≡M is a right congruence: for any x, y ∈ Σ∗ and a ∈ Σ we have:

x ≡M y ⇔ δ̂(s, x) = δ̂(s, y) = p ∈ Q
⇔ δ(δ̂(s, x), a) = δ(δ̂(s, y), a)

⇔ δ̂(s, xa) = δ̂(s, ya)

⇔ xa ≡M ya

2. ≡M refines L. Assume that x ≡M y then

x ∈ L⇔ δ̂(s, x) ∈ F def. of acceptance

⇔ δ̂(s, y) ∈ F x ≡M y

⇔ y ∈ L
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3. ≡M has a finite number of equivalence classes. This is because for any x ∈ Σ∗,
if δ̂(s, x) = p then [x] = {y ∈ Σ∗ | δ̂(s, y) = p} this means that the number of
distinct classes is equal to the number of states which is finite.

8.8 Myhill-Nerode Theorem

First we define the relation ≡L for a given language L ⊆ Σ∗

Definition 8.4. Given a language L ⊆ Σ∗ define ≡L on Σ∗ as: x ≡L y iff:

∀z(xz ∈ L⇔ yz ∈ L)

First we need the following lemma

Lemma 8.5. The relation ≡L is a right congruence that refines L and is the
coarsest such relation.

Proof. Suppose that x ≡L y then from the definition ∀z, xz ∈ L⇔ yz ∈ L.
Choose z = aw where a ∈ Σ and w ∈ Σ∗ then

x ≡L y ⇒ ∀a ∈ Σ ∀w ∈ Σ∗ (xaw ∈ L⇔ yaw ∈ L)

⇒ ∀a ∈ Σ(∀w ∈ Σ∗(xaw ∈ L⇔ yaw ∈ L))

⇒ ∀a ∈ Σ(xa ≡L ya)

Next we prove that ≡L refines L. Just take z = ε in the definition of ≡L to get

x ≡L y ⇒ (x ∈ L⇔ y ∈ L)

Finally we prove that any relation ≡ that is a right congruence and refines L it
refines ≡L. Let x ≡ y. Since it is a right congruence then
x ≡ y ⇒ ∀z(xz ≡ yz) which can be shown by induction. It follows that
∀z(xz ∈ L⇔ yz ∈ L) because ≡ refines L. therefore x ≡L y. �

Theorem 8.5 (Myhill-Nerode). For a language L ⊆ Σ∗ the following
statements are equivalent

(a) L is regular.

(b) There exists a Myhill-Nerode relation for L.

(c) ≡L has finite index.

Proof.
(a)⇒ (b) this follows from Theorem 8.4.
(b)⇒ (a) this follows from Theorem 8.3.
(b)⇒ (c) because any Myhill-Nerode relation ∼ refines ≡L, i.e. ∼⊆≡L and
since ∼ has a finite index then ≡L has finite index.
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(c)⇒ (a) because if ≡L has finite index then it is a Myhill-Nerode relation and
therefore L is regular. Note that the constructed DFA from ≡L is the minimal
DFA because ≡L is the coarsest Myhill-Nerode relation.

An alternate statement
Let S = {[x]≡L

| x ∈ Σ∗}. The Myhill-Nerode theorem states that L is
regular iff S is finite. This implies that we can show that a language L is
nonregular if we can find an infinite subset E ⊆ Σ∗ such that ∀x, y ∈ E
x 6≡L y. This is true because it is obvious that E ⊆ S and since E is infinite
then S is infinite.

8.9 Examples

We will use the alternate statement of Myhill-Nerode theorem to prove some
languages are not regular.

Example 8.4. Let L = {anbn} and consider the infinite set E = {ak}.

For any x = ak and y = am with k 6= m then x 6≡L y because akak ∈ L but
amak /∈ L therefore L is not regular since ≡L has an infinite number of
equivalence classes.

Example 8.5. Consider the language L = {x1y||x| = |y|} and the infinite set
E = {0k}.

For any x = 0k and y = 0m with k 6= m then x 6≡ y because x1x ∈ L and
y1x /∈ L and therefore ≡L has an infinite number of equivalence classes and
thus L is not regular.

Example 8.6. Consider the language L = {ww} and let set E = {an}.

Select two elements from E, say u = ak and v = al with k 6= l. u and v are
distinguishable by the string bakb because ubakb = akbakb ∈ L and
vbakb = albakb /∈ L.
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Lecture 9

Context-free Grammars

9.1 Introduction
We introduce context-free grammars informally by an example. Let ppal the language
of palindromes over {0, 1}, i.e. Lpal = {w ∈ {0, 1}∗ : w = wR}. We have shown
previously that Lpal is not regular but we can define it recursively as follows:
Basis: ε, 0, 1 ∈ Lpal
Induction: If w ∈ Lpal then 0w0 ∈ Lpal and 1w1 ∈ Lpal.

The above rules can be write as

A→ ε

A→ 0

A→ 1

A→ 0A0

A→ 1A1

Figure 9.1:

9.2 Formal Definition
Definition 9.1. A Context-Free grammar (CFG) is a quadruple G = (V, T, P, S)
where

1. V is a finite set of variables called nonterminals.

2. T is a finite set of symbols called terminals.
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3. S ∈ V represent the language being defined and called the start symbol.

4. P is a set of rules or productions that represent the recursive definition of the
language. Each production consists of

(a) A variable being defined by the production and called the head of the
production.

(b) The head is followed by the symbol→.

(c) The body of the production is a string of variables and terminals.

The CGF for Lpal introduced in the previous section can be specified as
G = ({P}, {0, 1}, R, P ) where R is the set of rules shown in Figure 9.1. We can
simplify the notation of productions by combining them. For example the productions
shown in Figure 9.1 can be written on a single line as P → ε|0|1|0P0|1P1.

Example 9.1. Use CFG to define a simplified version of expressions in programming
languages.

Typically an expression contains identifiers and operators. In this simplified version
we restrict the identifiers to begin with either a or b and could be followed with zero
or more symbols from the set {a, b, 0, 1}. Also we restrict the operators to addition +
and multiplication ∗ only. This language is regular and represented by
{a ∪ b}{a ∪ b ∪ 0 ∪ 1}∗. The CFG that describes the same language can be defined as
G = ({E, I}, {+, ∗, a, (, ), b, 0, 1}, P, E) and P is the set of productions shown in
Figure 9.2.

E → I

E → E + E

E → E ∗ E
E → (E)

I → a|b|Ia|Ib|I0|I1

Figure 9.2:

9.3 Derivations
Let G = (V, T, P, S) be a CFG and αAβ be a string such that α, β ∈ (V ∪ T )∗ and
A ∈ V . Let A→ γ be a production of G. We say αAβ 1⇒ αγβ, or αAβ ⇒ αγβ is a
one step derivation which replaces A by the body of one of its productions. We can
extend the above to multistep derivations, denoted by ∗⇒, in a recursive manner.

• α 0⇒ α for any α ∈ (V ∪ T )∗.
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• α n+1⇒ β if there exist γ such that α n⇒ γ and γ 1⇒ β.

• α ∗⇒ β if α n⇒ β for some n ≥ 0.

A string in (V ∪ T )∗ derivable from the start symbol S is called a sentential form. If
the sentential form contains only terminals then it is called a sentence. The language
generated by a grammar G, denoted L(G), is the set of all sentences

L(G) = {w ∈ T ∗ : S
∗⇒ w}

A language L ⊆ T ∗ is said to be a context-free language if L = L(G) for some CFG.

Example 9.2. The language L = {anbn : n ≥ 0}, which is not regular, is a CFL.

The following grammar generates L. G = (V, T, P, S) with V = {S}, T = {a, b},
P = {S → aSb|ε}

Proof. We need to show that w ∈ L iff w ∈ L(G).
(If)w ∈ L(G) then by definition S ∗⇒ w. We show by induction on the number of
derivation steps that w = anbn.
Basis. S ∗⇒ w in one step. In this case w = ε = a0b0 ∈ L.
Hypothesis. Assume that if S ∗⇒ w in n steps then w ∈ L. Consider an n+ 1

derivation S n+1⇒ w. Since it is more than one step then we can write S ⇒ aSb
n⇒ w.

This means that w is of the form axb. We can deduce that S n⇒ x and by the induction
hypothesis x = ambm therefore w = am+1bm+1 and w ∈ L.
(Only if) Assume that w = anbn. We show by induction on |w| that S ∗⇒ w.
Basis. Assume that |w| = 0 then w = ε and since S → ε then S ∗⇒ w.
Hypothesis. Assume that |w| = anbn implies that S ∗⇒ w.
Consider w = an+1bn+1. We can write w = axb with x = anbn. By the induction
hypothesis we have that S ∗⇒ x. From the production rule S → aSb we can write
S ⇒ aSb. But since S ∗⇒ x then S ⇒ aSb

∗⇒ axb therefore S ∗⇒ axb = w. �

Example 9.3. The language L = {anbm : 0 ≤ n ≤ m ≤ 2n} is generated by the
following grammar:

S → aSb|aSbb|ε

Theorem 9.1. L(Gpal) with Gpal({S}, {0, 1}, P, S) and P , the set of productions, as
defined in Figure 9.1 is the set of palindromes over {0, 1}

Proof. To prove the theorem we prove that w ∈ L(Gpal) if and only if w = wR.
The If part. Suppose that w = wR then we prove by induction on |w| that S ∗⇒ w. It
is noted that L can be divided into odd and even strings. The proof for the even strings
start from the basis of w = ε whereas the proof for the odd strings starts from the
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basis of w = 0 or w = 1. In other respects the two cases are totally equivalent.
Basis. For the even class, |w| = 0 then w = ε and since there is a production S → ε,
thus S ∗⇒ w. Similarly for the odd class, |w| = 1 then w = 0 or w = 1 since we have
S → 0|1 then S ∗⇒ w.
Induction hypothesis. Assume that for all w such that |w| = n and w = wR then
S
∗⇒ w.

Induction step.Let w = wR with |w| = n+ 2. Using the fact that w = wR then w
starts and ends with the same symbol and we can write w = bvb with v = vR where
b = 0 or b = 1. From the induction hypothesis we get S ∗⇒ v. Combining this fact
with one of the production rules we get S ⇒ bSb

∗⇒ bvb = w.

The only if part. We need to show that if S ∗⇒ w then w = wR which we proceed to
prove by induction on the number of derivations.
Basis. Assume that S ⇒ w then there is a production such that S → w, then w = ε or
w = 0 or w = 1 and therefore w = wR.
Induction step. Assume that S k⇒ x implies that x = xR for 0 ≤ k ≤ n. Consider
the string w such that S n+1⇒ w which can be written as S 1⇒ 0A0

n⇒ w = 0x0. By the
induction hypothesis, x = xR therefore w = wR. �

Given a grammar G and language L we would like to show that L = L(G). From the
above two examples we deduce the following general approach:

General Rule: To show that w ∈ L implies S ∗⇒ w we use induction on |w|. To
show that S ∗⇒ w implies w ∈ L we use induction on the number of derivation
steps.

Example 9.4. Given a string w define #a(w) = the number of a’s in w. Prove that
the language L = {w ∈ {a, b}∗|#a(w) = #b(w)} is generated by the following
grammar:

S → aSbS|bSaS|ε

Proof. The fact that all strings generated by the above rules produce strings with
equal number of a’s and b’s is obvious. We need to show that the grammar generates
all of them.
Let w ∈ L prove by induction that S ∗⇒ w.
base case: w = ε then clearly S ∗⇒ ε since S → ε is a production.
hypothesis: Assume that if w is of length 2n and w ∈ L then S ∗⇒ w.
induction step: Assume that x, of length 2(n+ 1) is in L. The string x can be
decomposed (in many ways) into a prefix and suffix: x = ps where the number of a’s
in p is equal to the number of b’s. Let u be the smallest such prefix then we can write
x = uv where #a(u) = #b(u) and it follows that #a(v) = #b(v). The prefix u can
start with either a or b and the two cases are symmetric so we consider the first case, u
starts with a. But being the smallest prefix that has equal number of a’s and b’s it
must end with a b (do you see why?). Therefore we can write x = aybv where y and

Theory of Computation 80 c©Hikmat Farhat



v have equal number of a’s and b’s and of length at most 2n. By the induction
hypothesis S ∗⇒ y and S ∗⇒ v then we can write

S
∗⇒ aSbS

∗⇒ aybv

which completes the proof �

Example 9.5. Let
L = {w ∈ {a, b}∗| every prefix of w has at least as many a’s as b’s}. Prove that the
following grammar generates L:

S → aS|aSbS|ε

Proof. First we show that every string generated by the above grammar generates
strings in L by induction over the number of derivations.
base case S 1⇒ w then w = ε which is clearly in L.
hypothesis Assume that if S n⇒ w then w ∈ L.
induction step Let S n+1⇒ x. We can write

S
1⇒ aS

n⇒ w

or

S
1⇒ aSbS

n⇒ w

It is clear that in both cases w starts with an a. The first case gives

S
1⇒ aS

n⇒ au

which implies that

S
n⇒ u

and by the hypothesis u ∈ L (i.e. every prefix of u has at least as many a’s as b’s).
Since x = au then x ∈ L.
The second case we have

S
1⇒ aSbS

n⇒ aubv

It follows that S n⇒ u and S n⇒ v and by the hypothesis u, v ∈ L and therefore x ∈ L.
Conversely, we show that every strings w ∈ L can be obtained from the grammar
above.
base case: for w = a and w = ab can be derived by the sequence S ∗⇒ aS

∗⇒ a and
S
∗⇒ aSbS

∗⇒ ab.
hypothesis: assume that if w ∈ L and |w| = n then S ∗⇒ w.
induction step. Let x ∈ L and |x| = n+ 1. Since x ∈ L then it has to start with an a
and we write x = ay. Because x ∈ L then every prefix of y has at most one b more
than a. If y contains no b’s then y ∈ L and by hypothesis S n⇒ y thus
S

1⇒ aS
n⇒ ay = x. If y contains at least one b, let u be a prefix of y containing all
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a’s (u could be ε) and write y = ubv. Now since every prefix of y contains at most one
more b than a’s it follows that v ∈ L and thus we have S ∗⇒ v and S ∗⇒ u. Finally

S
1⇒ aSbS

∗⇒ aubv = ay = x

�

Example 9.6. Give a grammar that generates the language
L = {w ∈ {a, b}∗|#a(w) > #b(w)}.

S → EaS|EaE
E → aEbE|bEaE|ε

The production rules for the variable E ensures that the generated string has an equal
number of a’s and b’s. For a given number of b’s, say k, we can generate as many a’s
more than b’s as we want by repeatedly using the production S → EaS. For example,
to generate m more a’s than b’s we apply S → EaS m− 1 times to get
EaEa . . . EaS then we apply the rule S → EaE once to get EaEa . . . EaEaE so
we have m times Ea. Since each E produces a string of equal number of a’s and b’s
the result is k b’s and m+ k a’s.

9.3.1 Leftmost and rightmost derivations

Sometimes it is useful to restrict the way in which we derive a given string. One way
to do such a thing is a leftmost derivation in which at each step the leftmost variable is
replaced by the body of one of its productions. As an example we show that the string
a ∗ (a+ b00) belongs to the language generated by the CFG defined in Example 9.1

E ⇒
lm
E ∗ E ⇒

lm
I ∗ E ⇒

lm
a ∗ E ⇒

lm

a ∗ (E)⇒
lm
a ∗ (E + E)⇒

lm
a ∗ (I + E)

⇒
lm
a ∗ (a+ E)⇒

lm
a ∗ (a+ I)⇒

lm
a ∗ (a+ I0)

⇒
lm
a ∗ (a+ I00)⇒

lm
a ∗ (a+ b00)

Similarly we can define a rightmost derivation and use it to show that a ∗ (a+ b00)
belongs to L(G).

E ⇒
rm

E ∗ E ⇒
rm

E ∗ (E) ⇒
rm

E ∗ (E + E) ⇒
rm

E ∗ (E + I)

⇒
rm

E ∗ (E + I0) ⇒
rm

E ∗ (E + I00) ⇒
rm

E ∗ (E + b00)

⇒
rm

E ∗ (I + b00) ⇒
rm

E ∗ (a+ b00) ⇒
rm

I ∗ (a+ b00) ⇒
rm

a ∗ (a+ b00)
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9.4 Parse Trees
Given a grammar G = (V, T, P, S) the parse trees of G are all trees satisfying the
following conditions

1. Each interior node is labeled by a variable in V .

2. Each leaf node is labeled by a variable, a terminal or ε. If it is ε then it is the
only child of its parent.

3. If an interior node is labeled A and its children are labeled, from left to right,
X1, . . . , Xk then A −→ X1 . . . Xk is a production of P .

Example 9.7. An example parse tree is shown in Figure 9.3.

E

E + E

Figure 9.3: a parse tree for the grammar defined in example 9.1

Example 9.8. An example parse tree is shown in Figure 9.4.

P

0 P 0

1 P 1

Figure 9.4: a parse tree for the grammar of palindromes

The yield of a parse tree is the concatenation of the labels, from left to right, of the
leaves of the tree. Of special importance is the yield of a tree whose root is the start
symbol of the grammar and the yield contains terminals only. In this case the yield is
a string in the language of the grammar. The yield of the tree show in Figure 9.6
below is a ∗ (a+ b00).

9.4.1 Ambiguous Grammar
The grammar shown in Figure 9.2 is ambiguous because, for example,the sentence
a+ b ∗ a has two different parse trees as shown in Figure 9.7 below. This leads us to
the following definition

Definition 9.2. A grammar G = (V, T, P, S) is said to be ambiguous if ∃w ∈ T ∗ for
which we can find two different parse trees, each with root S and yield w.
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In the example above we are lucky since we can find a grammar for the same language
which is not ambiguous

E → E + T |T
T → E ∗ F |F
F → I|(E)

I → a|b|Ia|Ib|I0|I1

Figure 9.5:

Not all languages, however, have an nonambiguous grammar. A context-free
languages L is said to be inherently ambiguous if all its grammars are ambiguous. For
example the language L = {aibjck : i, j, k ≥ 0, i = j or j = k} is inherently
ambiguous.

Theory of Computation 84 c©Hikmat Farhat



9.5 Non Context-free Languages

Theorem 9.2. If L is a context-free language then there exists a constant p such that
if s ∈ L and |s| ≥ p then we can write s = uvwxy with

1. |vx| > 0.

2. |vwx| ≤ p.

3. uviwxiy ∈ L.

Example 9.9. L = {anbncn|n ≥ 0} is not context-free.

Proof. Assume that L is context-free and let p be the pumping length. Consider
s = apbpcp. By the pumping lemma we can write s = uvwxy with |vwx| ≤ p. This
means that vwx cannot contain both a’s and c’s. Also by the pumping lemma
uv2wx2y ∈ L. There are two cases

1. vwx does not contain a the uv2wx2y contains less a’s then b’s and c’s.

2. vwx does not contain c the uv2wx2y contains less c’s then b’s and a’s.

Example 9.10. L = {ww|w ∈ {0, 1}∗} is not context-free.

Proof. Consider the string s = 0p1p0p1p ∈ L. By the pumping lemma we can write
s = uvwxy and consider uwy ∈ L. There are four cases

1. Since |vwx| ≤ p then vwx could be contained in the first 0p therefore
uwy = 0p−k1p0p1p and since uwy ∈ L by P.L. then we can write
0p−k1p0p1p = tt thus |t| = 2p− k/2. On the other hand, since k ≤ p then
p− k/2 > 0. Using the last inequality we get 2p− k < |t| < 3p− k then it
follows that the first t in tt = 0p−k1p0p1p ends with a 0. On the other hand, the
second tt = 0p−k1p0p1p ends with a 1 which is a contradiction. Similarly, if
vwx is contained in the first and the second 1p or the second 0p the argument is
the same because we can write, for example, uwy = 0p1p−k0p1p = tt ∈ L and
since 2p− k < |t| < 3p− k then the first t ends with a 0 whereas the second t
ends with a 1, also a contradiction.

2. vwx is contained in the first 0p1p. Since |vwx| ≤ p then we can write
uwy = tt ∈ L and uwy = 0p−i1p−j0p1p with 0 < k = i+ j ≤ p. Now
|tt| = 4p− k so 2p− k < |t| = 2p− k/2 < 3p− k. this means that the ”first” t
ends with a 0 and the ”second” t ends with a 1, a contradiction.

3. vwx is contained in 1p0p. Since |vwx| ≤ p then we can write vx = 1i0j . Let
k = i+ j from the P.L we know that 0 < k ≤ p, also uwy ∈ L therefore
0p1p−i0p−j1p ∈ L. So we can write tt = 0p1p−i0p−j1p thus
2p− k < |t| = 2p− k/2 < 3p− k. This means that the ”first” t starts and ends
with 0 but the ”second” t ends with 1, a contradiction.
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4. vwx is contained in the second 0p1p Since |vwx| ≤ p then we can write
vx = 0i1j . Let k = i+ j from the P.L we know that 0 < k ≤ p, also uwy ∈ L
therefore 0p1p0p−i1p−j = tt ∈ L. We have 2p− k < |t| < 3p− k which
means that the ”second” t starts with a 1 whereas the ”first” t starts with a 0, a
contradiction.

Alternative proof
Since s = 0p1p0p1p = uvwxy, by pumping lemma uwy ∈ L which means that
uwy = tt for some string t. Let |vx|= k then |uwy|= 4p− k, if we combine that with
the fact that |vx|≤ p we get 2p− k <|t|= 2p− k/2 < 3p− k.
There are three cases: vx was ”removed” from the first 0p1p of s, from the second or
from both.
In the first case we get that uwy = tt = α0p1p with |α|= 2p− k. On the other hand,
we know that 2p− k <|t|= 2p− k/2 < 3p− k then the first t ends with 0 while the
second ends with 1 which is a contradiction.
In the second case we get that uwy = tt = 0p1pα and again |α|= 2p− k. Using the
size of t we get that the second t starts with 1 while the first starts with 0, again a
contradiction.
The third and final case is when uwy = tt = 0p1p−i0p−j1p with i+ j = k. Note that
i 6= 0, j 6= 0, otherwise it will fall back to the previous cases. Since |t|> 2p− k > p
then the only way for both t’s to start with 0 and end with 1 is if i = j = k/2 but that
case means the first t has p 0’s and p− k/2 1’s while the second t has p− k/2 0’s and
p 1’s.
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Figure 9.6: a ∗ (a+ b00) is the yield of this parse tree
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Lecture 10

Pushdown Automata

10.1 Introduction
A pushdown automata (PDA) is a nondeterministic finite automaton with ε-transitions
with one extra feature: a stack on which it can store list of symbols. This way a PDA
can remember an infinite number of information and access them in a last-in first-out
fashion. A PDA bases its transitions on

1. The current state

2. The input symbol

3. The symbol on top of the stack.

In one transition the PDA

1. Consumes the input symbol.

2. Goes from the current state to a new state which could be the same.

3. Replaces the top of the stack with 0 or more symbols.

10.2 Formal Definition of PDA
A PDA P = (Q,Σ,Γ, δ, q0, Z0, F ) with

1. Q is a finite set of state.

2. Σ is a finite set of symbols that does not include ε.

3. Γ is a finite set of stack symbols, usually Γ = Σ ∪ Z0.

4. δ the transition function which takes a triple (q, a,X) where a ∈ Q, a ∈ Σ or
a = ε and X ∈ Γ. The output of δ is a pair p, γ where p is a state and γ is a
string of stack symbols that replace X .
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5. q0 is the start state.

6. Z0 is the start symbol on the stack.

7. F is the set of accepting states.

Example 10.1. The language L = {wwR : w ∈ {0, 1}∗} is accepted by the PDA
P = ({q0, q1, q2}, {0, 1}, {0, 1, Z0}, δ, q0, Z0, {q2}) with δ defined as follows:

1. δ(q0, a,X) = (q0, aX) if a 6= ε. The symbol a is pushed on the stack.

2. δ(q0, ε,X) = (q1, X). The stack is left intact.

3. δ(q1, 0, 0) = (q1, ε) and δ(q1, 1, 1) = (q1, ε). If the input symbol matches the
top of the stack then the PDA consumes the input and pops the stack.

4. δ(q1, ε, Z0) = (q2, Z0). We the PDA encounters the bottom of the stack it
moves to q2.

Some notes on the behaviour of the PDA. First, the PDA ”guesses” when it reaches
the ”middle” of the string and it moves ”spontaneously” to state q1 and starts
”matching” the string stored on the stack with the input. An equivalent way of looking
at this is that for a given string w the PDA pushes n symbols of w on the stack and
then starts the matching process. Since n is a variable there is a value of n that works.

Example 10.2. The language of all palindromes, L = {w = wR : w ∈ {0, 1}∗} is
accepted by the PDA of example 10.1 with the addition of the transitions

δ(q0, 1, X) = (q1, X)

δ(q0, 0, X) = (q1, X)

The graphical representation of the PDA of example 10.2 is shown in Figure 10.1.

q0 q1 q2

0,X/0X
1,X/1X

0,0X/X
1,1X/X

ǫ,X/X
1,X/X
0,X/X ǫ, Z/Z

Figure 10.1: PDA for palindromes

We will argue that the PDA accepts all palindromes but we need to show that all
palindromes of even length are of the form xxR and the ones with odd length are of
the form xaxR where a = 0 or a = 1.
even. We prove by induction that all even palindromes are of the form xxR.
Basis. ε = εεR.
Hypothesis. Assume that all palindromes of length n even are of the form xxR and
consider a palindrome w of length n+ 2. Since n starts and ends with the same
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symbol we can write w = axa where a = 0 or a = 1. On the other hand since
w = wR we have wR = (axa)R = axRa = axa. Therefore x is a palindrome of
length n and by the induction hypothesis we can write x = yyR. Thus
w = ayyRa = (ay)(ay)R.
odd. We also prove by induction that all odd palindromes are of the form xaxR where
a = 0 or a = 1.
Basis. Odd palindrome of length one is a = εaε = εaεR.
Hypothesis. Assume that all palindromes of length n+ 1, n even, are of the form
xaxR. Consider a palindrome w with |w| = n+ 3. Again, w starts and ends with the
same symbol so we can write: w = axa and as before this implies that x is a
palindrome of length n+ 1. By the induction hypothesis x = yayR.Therefore
w = ayayRa = (ay)a(ay)R.
From the above we can see that any palindrome can be written as xαxR where α
could be 0,1 or ε. Then given an input palindrome xαy, with y = xR, we will use the
following strategy to recognize palindromes by starting in state q0 (see PDA in figure
10.1.

1. If the input symbol is in x push it on the stack.

2. If α is reached, consume it and move to state q1.

3. For every symbol in y pop a matching symbol from the stack.

4. When all symbols are matched, all the input string is consumed and the stack is
empty. Move to state q2 and accept.

10.3 Instantaneous Descriptions of a PDA
When a PDA reads an input symbol it goes from given configuration to another
configuration which unlike the case for finite automata includes more than the state. A
PDA configuration is specified by a triple (q, w, γ) with

1. q is the state of the PDA.

2. w is the remaining input string.

3. γ is the content of the stack.

Given a PDA P = (Q,Σ,Γ, δ, q0, Z0, F ) and suppose that δ(q, a,X) contains (p, α)
then we define the configuration transition ` as follows: for all w ∈ Σ∗ and β ∈ Γ∗

(q, aw,Xβ) ` (p, w, αβ)
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(q0, 1111, Z0)

(q0, 111, 1Z0) (q1, 1111, Z0) (q2, 1111, Z0)

(q0, 11, 11Z0) (q1, 111, 1Z0) (q1, 11, Z0)

(q2, 11, Z0)

(q0, 1, 111Z0) (q1, 11, 11Z0) (q1, 1, 1Z0)

(q1, ǫ, Z0)

(q2, ǫ, Z0)(q0, ǫ, 1111Z0)

(q1, ǫ, 1111Z0)

(q1, 1, 111Z0)

(q1, ǫ, 11Z0)

Figure 10.2: ID’s of PDA on input 1111
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Lecture 11

CYK Algorithm

11.1 Introduction
Given a grammar G =< V, T, P, S > in Chomsky Normal Form (CNF) and a string
w ∈ T ∗ we would like to answer the question: is w ∈ L(G). This can be answered by
using the CYK algorithm. Suppose that we can write w = a1a2 . . . an. and let

Xij = {X ∈ V |X ∗⇒ ai . . . aj}

It is clear that w ∈ L(G)⇔ S ∈ X1n. Once the set X1n is computed we check if the
start symbol S is in X1n. If it is then the string w is in the language of G. But since G
is in CNF then ∃Y,Z ∈ V such that X → Y Z. Combining both results we get

Y Z
∗⇒ ai . . . aj

The above derivation has many possibilities for Y and Z. It could be that Y ∗⇒ a1 and
Z
∗⇒ a2 . . . aj or Y ∗⇒ a1a2 and Z ∗⇒ a3 . . . aj ... etc. In general we can write

Y
∗⇒ a1 . . . ak and Z ∗⇒ ak+1 . . . aj for i ≤ k ≤ j − 1. Using the definition of the

X ′s we have

Y ∈ Xik

Z ∈ Xk+1j

Collecting all the above results we get a recursive way of computing the Xij

Xij = {X ∈ V |X → Y Z, Y ∈ Xik, Z ∈ Xk+1j , i ≤ k ≤ j − 1}

A simple top-down approach to compute the Xij would take exponential time. Instead
we use a bottom-up calculation, i.e. dynamic programming.

11.2 Examples
Example 11.1. Consider the grammar (in CNF)
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S → AB|BC
A→ BA|a
B → CC|b
C → AB|a

Does the string w = baaba belong to the language?We know that it does if S ∈ X15

where

X15 = {X|X → Y Z, Y ∈ X1k, Z ∈ X(k+1)5, 1 ≤ k ≤ 4}
= {X|X → Y Z}
where

Y ∈ X11, Z ∈ X25

or

Y ∈ X12, Z ∈ X35

or

Y ∈ X13, Z ∈ X45

or

Y ∈ X14, Z ∈ X55

And each of the above X ′s needs to be computed from smaller components. For
example to compute X12 we need to compute X11 and X22...etc. As mentioned before
we do it in a bottom-up manner. The entries in the table above were obtained as

{S,A,C}
∅ {S,A,C}
∅ {B} {B}

{S,A} {B} {S,C} {S,A}
{B} {A,C} {A,C} {B} {A,C}

b a a b a

Table 11.1: Solution for example 11.1

follows.
Row one: X11 = {X|X → b} = {B}. X22 = {X|X → a} = {A,C}. X33 = X22.
X44 = X11 and X55 = X22.
Row two: X12 = {X|X → Y Z, Y ∈ X11, Z ∈ X22} = {X|X → BA or X →
BC} = {A,S}.
X23 = {X|X → Y Z, Y ∈ X22, Z ∈ X33} = {X|X → AA or X → AC or X →
CA or X → CC} = {B}
X34 = {X|X → Y Z, Y ∈ X33, Z ∈ X44} = {X|X → AB or X → CB} =
{S,C}
X45 = {X|X → Y Z, Y ∈ X44, Z ∈ X55} = {X|X → BA or X → BC} =
{A,S}
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Row three: X13 = {X|X → Y Z, Y ∈ X11, Z ∈ X23 or Y ∈ X12, Z ∈ X33} =
{X|X → BB or X → SA or X → SC or X → AA or X → AC} = ∅
X24 = {X|X → Y Z, Y ∈ X22, Z ∈ X34 or Y ∈ X23, Z ∈ X44} = {X|X →
AS or X → AC or X → CS orX → CC or X → BB} = {B}
X35 = {X|X → Y Z, Y ∈ X33, Z ∈ X45 or Y ∈ X34, Z ∈ X55} = {X|X →
AS or X → AA or X → CS or X → CA or X → SA or X → SC or X →
CA or X → CC} = {B}
Row four:X14 = {X|X → Y Z, Y ∈ X11, Z ∈ X24 or Y ∈ X12, Z ∈ X34or Y ∈
X13, Z ∈ X44} = {X|X → BB or X → SS or S → SC or X → AS or X →
AC or ∅} = ∅
X25 = {X|X → Y Z, Y ∈ X22, Z ∈ X35 or Y ∈ X23, Z ∈ X45 or Y ∈ X24, Z ∈
X55} = {X|X → AB or X → CB or X → BS or X → BA or X → BA or X →
BC} = {S,C,A}
Row five: X15 = {X|X → Y Z, Y ∈ X11, Z ∈ X25 or Y ∈ X12, Z ∈ X35 or Y ∈
X13, Z ∈ X45 orY ∈ X14, Z ∈ X55} = {X|X → BS or X → BA or X →
BC or X → SB or X → AB or X → ∅ or X → ∅} = {A,S,C}

Example 11.2. In this example we first convert into the grammar
G =< V = {S}, T = {a, b}, P, S > with P , the production rules given by

S → aSb

S → ab

We introduce two new variables A and B with A→ a and B → b to get

S → ASB

S → AB

Then we introduce a third variable C with C → SB. The final result is

S → AC

S → AB

C → SB

A→ a

B → b

Now having the grammar in CNF we can check if the string aabb is in L(G). By
running the CYK algorithm as we did in the previous example we get the results
shown in table 14.2 below.
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{S}
∅ {C}
∅ {S} ∅
{A} {A} {B} {B}

a a b b

Table 11.2: Solution for example 11.2

11.3 Complexity
Given an input string w with |w| = n, the complexity of the CYK algorithm can be
obtained as follows. Recall that

Xij = {X|X → Y Z, Y ∈ Xik, Z ∈ Xk+1j , i ≤ k ≤ j − 1}

Now for each Y Z ∈ XikXk+1j we need to find another variable X such that
X → Y Z. Since the number of variables in the grammar is independent of the size of
the size of the input string, then the size of XikXk+1j is independent of the input size
therefore the cost of finding X such that X → Y Z for each XikXk+1j is independent
of the size of the input. For each Xij there are at most O(n) pairs XikXk+1j thus the
cost of computing Xij is O(n). On the other hand the number of Xij to be computed
is O(n2) therefore the total cost of the algorithm is O(n3).
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Lecture 12

Turing Machines

12.1 Introduction
So far we have looked at two models of computations: the equivalent models of DFA,
NFA and REGEXP and the equivalent model of PDA and CFG. We saw that some
languages are not regular and therefore cannot be computed using any of the regular
language tools and some languages are not context-free and therefore cannot be
computed using PDA’s. In this lecture we introduce a new model: Turing Machines.
Intuitively, a TM is a DFA or NFA with an infinite tape that can store symbols. A TM
has a head position on one of the tape cells. The TM makes a decision based on the
current state and the symbol ”under” the head. The action of the TM can involve
moving to a new state (which could be the same as the old) replacing the symbol
under the head with another symbol(could be the same) and moving the head one cell
to the right or left. We will see that such a model allows us to solve problems that
could not be solved with the models that we have considered so far.

12.2 Formal Definition
Formally a Turing Machine is a 9-tuple

M = (Q,Σ,Γ, δ,B,t, s, t, r)

where

1. Q is a finite set of states.

2. Σ is a finite input alphabet that does not contain t and B.

3. Γ is a finite tape alphabet. Σ ⊂ Γ.

4. δ : Q× Γ→ Q× Γ× {R,L} is the transition function.

5. B is the left endmarker.
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6. t is the blank symbol.

7. s ∈ Q is the starting state.

8. t ∈ Q is the accepting state.

9. r ∈ Q is the rejecting state.

Intuitively, δ(p, a) = (q, b, R) means that if the TM is in state p and the head reads the
symbol a then it moves to state q, replaces a by b and the head moves to the right.
There are a few restrictions on the above definition. For every p ∈ Q there exist q ∈ Q
such that δ(p,B) = (q,B, R). This means that the head ”does not fall” of the end of
the tape. Also the accepting and rejecting states are ”halting” states. When the TM
reaches them it never ”leaves” them. More precisely, for every b ∈ Γ there exists
c, c′ ∈ Γ and d, d′ ∈ {L,R} such that

δ(t, b) = (t, c, d)

δ(r, b) = (r, c′, d′)

12.3 Configurations
Define the infinite string tw = t t . . .. The tape of a TM contains a infinite string of
the form xtw where x ∈ Γ∗ is a finite string. Let Γw = {x tw |x ∈ Γ∗}. A
configuration of a TM is an element from Q×Γw ×N : it specifies the state the TM is
in, the content of the tape and the position of the head. For example the configuration

(p,Babctw, 1)

means that the TM is in state p, the tape contains the string Babctw and the head is
positioned (reading) on ”a”. Alternatively, since for any finite number of steps the
tape will always contain a infinite number of blank symbols to right it is not necessary
to write them explicitly. On the other hand, since we are using symbols, p, r, s, t . . .
for states different than the alphabet,a, b, c . . . we can use a simple notation for a
configuration as : Bpabc. This means that the tape contains abctw and the head is
positioned over the a and the TM is in state p.
Let α = Ba1 . . . ak−1pak . . . an be a configuration. We say that α yields in one step
the configuration β, denoted by α ` β or α`1

β if

β = Ba1 . . . ak−1bqak+1 . . . an and δ(p, ak) = (q, b, R)

OR
β = Ba1 . . . qak−1bak+1 . . . an and δ(p, ak) = (q, b, L)

As usual, we define α`β in a recursive manner

1. α`0
α .

2. α`n+1
β if α`nγ `1

β for some γ.
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3. α`β if α`nβ for some n.

A Turing Machine, M is said to accept an input string x ∈ Σ∗ if

Bsx`B ytz for some y, z ∈ Γ∗

for some y ∈ Γ∗ and n ≥ 0. A Turing Machine, M is said to reject an input string
x ∈ Σ∗ if

Bsx`y rz for some y, z ∈ Γ∗

for some y ∈ Γ∗ and n ≥ 0. We say that a Turing Machine halts on x if it accepts or
rejects x. An important point should be noted: for a Turing Machine ”not accepting”
is NOT the same as rejecting because a Turing Machine can fail to halt (loops).

Definition 12.1. The set of strings that a Turing Machine M accepts is called the
language of M or the language recognized by M , denoted by L(M).

Definition 12.2. A language L is called recursively enumerable if there exists a
Turing Machine M such that L = L(M).

Definition 12.3. A Turing Machine that always halt is called a decider or total.

Definition 12.4. A language L is called recursive or decidable if there exists a total
Turing Machine M such that L = L(M).

Figure 12.1: Solution for example 1
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Figure 12.2: Corrected solution for example 1

Example 12.1. A Turing Machine that accepts L = {anbncn | n ≥ 0}

The basic idea is to do multiple ”passes” and in each pass the machine ”removes”, by
replacing the symbol with a blank, one c, one b and one a. This is done as follows.
For a given ”pass” the machine is looking for a c, if it finds one it replaces it with a
blank and starts looking for a b, when it finds a b it replaces it with a blank and starts
looking for an a. When it finds an a it replaces it with a blank and rewinds by going
right until if finds an ”X” which means the current ”pass” is over. If at a certain there
are no more a’s or b’s or c’s then it accepts. If at any point the machine does not find
the symbol it is looking for it rejects.
Actually the previous solution is not totally correct because it also accepts strings of
the form abcabc . . . abc. Once an ’a’ is matched we need to check that it is not
followed by a ’c’, or a ’b’ as shown in the modified TM in Figure 12.2

Example 12.2. A Turing machine that accepts the language
L = {0p | p = 2n, n ≥ 0}
The basic idea is to divide the number of 0’s by two in every pass. If initially the
number of zeros is a power of 2 then after every pass the result of the ”division” of the
number of zeros is even except at the last step when only one zero is left. The
”division” operation is done by marking every other 0 by an ”X”. The
implementation is shown in Figure 15.2.

Example 12.3. A Turing machine that accepts the language
L = {w#w | w ∈ {0, 1}∗}
The basic idea is to match every symbol read before the ”#” mark with the same
symbol after the ”#” mark. Again the TM does multiple passes, in each pass it reads
the first symbol, say a, replaces it with an ”X” then starts looking for the first non ”X”
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Figure 12.3: Solution for example 2

symbol after the ”#” mark. If that symbol is not b reject otherwise replace it by an
”X”. This constitutes a single pass. Then do as many passes as required to complete
the input string.

12.4 Multitape Turing Machine
A multitape machine is a direct extension of a single tape Turing Machine. A
multitape Turing machine has k tapes and k heads. When the machine is in state p it
reads the k symbols, a1 . . . ak, pointed to by the k heads and makes the transition to a
state q (possibly the same as q), overwrites the symbols a1 . . . ak by the symbols
b1 . . . bk (with the possibility of some of them being the same), and moves each head
independently to the right or to the left. Initially, the input string is placed in the first
tape and all other tapes are blank. As the computation progresses the configuration of
a k tape machine can be describe by (p, z1, . . . , zk, n1, . . . , nk) where zi ∈ Γw and ni
is the position of head i. In one step the machine moves to configuration
(q, z′1, . . . , z

′
k, n
′
1, . . . , n

′
k) with zi and z′i differ in one symbol at position ni and

n′i = ni ± 1.

Example 12.4. A two-tape Turing machine that will be useful later is one that moves
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Turing machine

Figure 2: State diagram for TM

Examples of Turing Machines – p.12/22

Figure 12.4: Solution for example 3

its second tape k times where k is a value stored on its first tape. We still use the same
notation as before but since there are two tapes we label the values of each tape to
distinguish between them. The two-tape Turing machine that performs this operation
is shown below in figure 12.5. The basic idea is is to do k passes where in each pass
the head of tape 2 moves one position to the right and the value in tape 1 is
decremented by 1.
The two-tape machine stops when the value in tape 1 reaches zero. The machine starts
in state q0 and stays there while moving the head to the right as long as the head reads
zero. If no 1 is read and the blank symbol is reached the machine stops. If the value in
tape 1 is non-zero, i.e. contains at least one 1, it decrements the value by one as
follows: the machine ”rewinds” to the end of the input and starts scanning left turning
a 0 into a 1 until it reads a 1 which it turns into a zero and goes back to state q0.

Example 12.5. Another two-tape Turing machine that we will use is later is one that
copies the content of its second tape to it first tape. The solution is shown below in
figure 12.6. Both tapes start at the beginning of the input and the value read in tape 1
is copied to tape 2 until it encounters a comma or a star symbol then the copying
stops and tape 1 is rewinded to the beginning.

12.4.1 Storing State Information
A number of states can be added to a Turing machine to allow it to save information
for later use or to ”remember” what it is doing. As an example suppose that we want
to design an TM that recognizes the language of all strings in which the first symbol
does not appear again in the string, using regular expressions we can write: 01∗ ∪ 10∗.
A Turing machine that recognize that language might work as follows: initially the
machine is waiting to read its first symbol, once it does it moves to a different state
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q0 q1

q2q3t

t1 = 0/R1
t1 = 0, 1/R1

t1 = 0/t1 = 1, L1

t1 = 0, 1/L1

t1 = 1/R1

t1 = ⊔/L1

t1 = 1/t1 = 0, L1

t1 = ⊲/R1, R2
t1 = ⊔/L1

Figure 12.5: A two-tape machine that moves its second head k number of times, k is
stored in tape 1

q0 q1 q2

t2 = b/t1 = b,R1, R2 t1 = 0, 1/L1

t2 =′,′ , ⋆/L1, R2 t1 = ⊲/R1

Figure 12.6: A two-tape machine that copies the content of its second tape to its first
tape

that symbolizes that the TM has now read its first symbol and reads the others. At any
time the TM needs to be able to compare the read symbol with the first symbol which
means it has to store the first symbol somewhere. This is done by using tuples to
denote the state of a TM. For example, initially the TM is in state (q0, U) then if it
reads a 1 it moves to state (q1, 1) and moves right otherwise it goes to state (q1, 0) and
moves right. These moves can be described by the transition function
δ((q0, U), 0) = ((q1, 0), 0, R) and δ((q0, U), 1) = ((q1, 1), 1, R). When the TM is in
state (q1, 0) it means it has read the first symbol and it is a 0 and when it is in state
(q1, 1) it means it has read the first symbol and it is a 1. The TM continues until it
finds a blank where it halts and accepts. If at any moment it reads a symbol equal to
the first one it rejects. These moves are described by
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δ((q0, U), 0) = ((q1, 0), 0, R) first symbol is 0
δ((q0, U), 1) = ((q1, 1), 1, R) first symbol is 1
δ((q1, 0), 1) = ((q1, 0), 1, R) continue
δ((q1, 0), 0) = ((q1, U), 0, R) reject
δ((q1, 1), 0) = ((q1, 1), 1, R) continue
δ((q1, 1), 1) = ((q1, U), 1, R) reject
δ((q1, 0),t) = ((q1, A),t, R) accept
δ((q1, 1),t) = ((q1, A),t, R) accept

12.4.2 Simulating a Multitape Machine

Given a multitape machine N with a finite set of states QN and a tape alphabet Γ and
a transition function δ(p, a1, . . . , ak) = (q, b1, . . . , bk, H1, . . . ,Hk) where each of the
Hi’s can be either R or L, the head moves right or left. N can be simulated by a
single tape Turing machine M as follows. The states of M are tuples from
QN × Γk ×K ×HK where K = {0, 1, . . . , k}. The tape alphabet for M are form
the set (A ∪ Γ)k where A = {t, X}. In other words, a single tape symbol in M
contains a tuple of the form (A, b1, A, b2, . . . , A, bk) with bi ∈ Γ. The role of the X’s
is to denote the position of the head for each tape. For example, if tape i contains an
X in cell m then the symbol to be read in tape i+ 1 is in the position m. A convenient
graphical representation would be for the tape of M to contain 2k tracks as shown in
the figure below. Using the storage in the state, introduced in the previous section M
scans its input from left to right looking for an X in the tracks. For each X in track i it
copies the content of the cell in track i+ 1 and stores it until it reads all of them then it
uses the transition function of N . If N starts with state p then M starts in state
(p, U, . . . , U︸ ︷︷ ︸

k times

, 0, U, . . . , U︸ ︷︷ ︸
k times

) where U symbolizes a don’t care symbol and the 0 means

that M has not read any symbol yet. It scans from left to right and when it encounters
an X in track i and the symbol in track i+ 1 is ai then it moves to state
(p, U, . . . , ai, . . . , U︸ ︷︷ ︸

k times

, 1, U, . . . , U︸ ︷︷ ︸
k times

) and it keeps doing this until the it reaches the state

(p, a1, . . . , ak, k, U, . . . , U︸ ︷︷ ︸
k times

) which means that it has read all the symbols. At this point

M consults the transition function of N and if it is
δ(p, a1, . . . , ak) = (q, b1, . . . , bk, H1, . . . ,Hk) then M moves into state
(q, b1, . . . , bk, k,H1, . . . ,Hk). M starts scanning again from left to right and when it
encounters an X in tape i it replaces the content of tape i+ 1 with bi and moves the X
in tape i one cell to the left or right depending on the value of Hi and moves to state
(q, b1, . . . , U︸︷︷︸

i

, . . . , bk, k − 1, H1, . . . , U︸︷︷︸
i

, . . . ,Hk) it keeps doing this until k = 0
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and it enters the state (q, U, . . . , U︸ ︷︷ ︸
k times

, 0, U, . . . , U︸ ︷︷ ︸
k times

) and it has simulated one step of N .

12.4.3 Running Time

Definition 12.5. We say that a Turing machine M has a running time T (n) if for
every input w of length n, M halts after making at most T (n) moves. Note that the
running time is T (n) regardless of whether M accepts w or it does not accept it. If M
does not halt then the running time is infinite.

Since any multi-tape machine can be simulated by a single tape machine can we find a
relationship between the running time of the two? This question is answered by the
following theorem.

Theorem 12.1. Simulating n moves of a multiple tape machine requires O(n2) steps
on a single tape machine.

Proof. From the previous section we know that a single tape has to make two passes
over the input: one pass, from the left end marker to the last ”X” to read all the
markers and another pass, from right to the left end marker, to make the changes.
Since we assume that initially all heads start at the left end marker then after n steps
the heads cannot be more than n places away from the left end marker. This means
that at step n the single tape machine needs to do at most n scans to the right and n
scans to the left. Also for each tape if an X is encountered in the ”writing” phase the
machine might need to do 2 extra moves if the head is to be moved to the right to
bring it back to its position. Thus we need to add 2k extra operations for a k-head
machine so the total cost is 2 ∗ n+ 2 ∗ k at step n. To simulate n steps therefore the
single tape machine needs O(n2) operations because k is independent of n.

�

12.5 Representing TM with Strings

Any Turing machine with input in {0, 1}∗ can be represented as a binary string.
Suppose M = (Q,Σ,Γ, δ,B,t, r, s, t) is a Turing machine with Q = {q1, . . . , qk}
the states of the TM where always q1 is the starting state,q2 is the accepting state and
q3 is the rejecting state. Also, Γ = {X1, . . . , Xl} with X1 = B,X2 = t,X3 = 0 and
X4 = 1. Finally, R = D1 and L = D2 then a given transition
δ(qi, Xa) = (qj , Xb, Du) can be encoded as 0i10a10j10b10u

Example 12.6. Let M = ({q1, q2, q3, q4, q5}, {0, 1}, {B,t, 0, 1}, δ,B,t, q1, q2, q3)

Theory of Computation 105 c©Hikmat Farhat



with

δ(q1, 0) = (q5, 0, R) 010310510310

δ(q1, 1) = (q4, 1, R) 010410410410

δ(q4, 0) = (q4, 0, R) 0410310410310

δ(q4, 1) = (q3, 1, R) 0410410310410 reject

δ(q4,t) = (q2,t, R) 0410210210210 accept

δ(q5, 0) = (q3, 0, R) 0510310310310 reject

δ(q5, 1) = (q5, 1, R) 0510410510410

δ(q5,t) = (q2,t, R) 0510210210210 accept

Since nowhere a sequence of 11 occurs the transition function can be encoded as

010310510310︸ ︷︷ ︸
δ(q1,0)=(q5,0,R)

11 010410410410︸ ︷︷ ︸
δ(q1,1)=(q4,1,R)

11 0410310410310︸ ︷︷ ︸
δ(q4,0)=(q4,0,R)

11 0410410310410︸ ︷︷ ︸
δ(q4,1)=(q3,1,R)

11 0410210210210︸ ︷︷ ︸
δ(q4,t)=(q2,t,R)

11 0510310310310︸ ︷︷ ︸
δ(q5,0)=(q3,0,R)

11 0510410510410︸ ︷︷ ︸
δ(q5,1)=(q5,1,R)

11 0510210210210︸ ︷︷ ︸
δ(q5,t)=(q2,t,R)

12.6 Universal Turing Machine
The universal Turing Machine U can simulate any machine M with input w. To do so
we need an encoding for a TM configuration. Recall that a configuration consists of
three values: the state, the content of the tape and the position of the head. All of these
can be represented by a string of the form 0p10r10a1 . . . 10ak where 0p is an encoding
of state p, 0r is encoding of the head position at r and the 0a1 . . . 0ak are the symbols
on the tape and finally the symbol 1 is used as a separator. Since the patter 11 does not
occur we can use it as a separator between different configurations. The UTM has 2
tapes

1. Tape 1 holds the code for M using the encoding of the previous sections.

2. Tape 2 holds configurations of M , again using the encoding of the previous
sections.

Initially tape 2 has the configuration defined by the starting state and the input
string.To simulate a move of M ,

1. U reads the configuration of M from tape 2 which will be of the form
0p10s10k11 . . . 10ks . . . 10kn .

2. U will scan tape 1 for a transition of the form 0p10ks10q10kt10m. This means
move to a state represented by 0q , replace the symbol 0ks by the symbol 0kt and
move the head left or right depending on the value of m.
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3. U will append the configuration 0q10p±110k11 . . . 10kt . . . 10kn where p± 1
depends on whether the head moved left or right. If this new configuration is
accepting/rejecting then the UM accepts/rejects. Otherwise it becomes the
current configuration and go to step (1).

12.7 Nondeterministic Turing Machine
Similar to the case of automata a Nondeterministic Turing machine can have, for a
given input, more than one possible transition. Given a configuration
Ba1 . . . ak−1pak . . . an the result of the transition function is a set of m triplets:
δ(p, ak) = {(q1, b1, D1), . . . , (qm, bm, Dm)} where Di ∈ {L,R}. An example is
shown in Figure 12.7 the NTM that accepts the language
L = {w ∈ {a, b}∗ | w contains a c preceded or followed by ab}

q1 q2 q3 q4

q5 q6 q7

a/aR
b/bR
c/cR

c/cR a/aR b/bR

c/cL

b/bL a/aL

Figure 12.7: Non deterministic TM example

A more interesting example of a non-deterministic Turing machine (NTM) is given in
the next example

Example 12.7. Give a non-deterministic Turing machine (NTM) that decides the
following language

L = {w ∈ {0, 1}∗ | w = uu}

The above language is decided by the Non-deterministic Turing machine shown in
Figure 12.8. The working of the solution NTM can be gleamed by observing how it
functions on an example input, say w = 10101010, which should belong to L. To
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q0

q1

q2

q3t r

X/R

0, 1, X/R

0, 1, X/R

0, 1, X/L

⊔/−

⊔/−

⊔/−1/X,R

0/X,R

1/X,L

0/X,L

⊲/R

Figure 12.8: Non deterministic TM solution for example 12.7

illustrate the example we will be using the notation for TM configurations that we
have established earlier. The initial configuration is

Bq010101010

As explained before, the above (initial) configuration means that the TM is initially in
the starting state (q0), the input to the TM is 101010 and the position of q0 denotes the
position of the head, in this case it is reading the first symbol, 1. Recall that the
symbol ` is used to denote the transition from one configuration to another. The first
such transition in our example is

Bq010101010 ` BXq10101010

The above transition reflects the q0
1/X,R−→ q1 transition, because when in state q0 and

reading the symbol 1 the TM replaces the 1 with an X and moves to the right.
Continuing with our computation we get the following

BXq10101010 ` BX0q1101010

So far both steps were deterministic in the sense that the TM had only one possible
transition. The next step illustrates the idea of a non-deterministic machine that
always makes the correct guess. The TM is in configuration BX0q1101010 and by
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inspecting Figure 12.8 we can see that the TM has two options: either it moves right
or replaces the 1 by X and moves left. Since the machine can always makes the
correct guess, it guesses that it should move right without replacing the 1 by X :

BX0q1101010 ` X01q101010

The remainder of the computation, with the TM always guessing right, is as follows

BX0q1101010 ` X01q101010 ` BX010q11010BX010Xq3010

`q 3 BX010X010 ` Bq0X010X010 ` Xq0010X010 ` XXq210X010

`X X10Xq2010 ` BXX10XXq310`q 3 BXX10XX10

` Bq0XX10XX10 ` BXXq010XX10 ` BXXXq10XX10

`BXXX0XXq110 ` BXXX0XXXq30`q 3 BXXX0XXX0

` Bq0XXX0XXX0`BXXXXq00XXX0 ` BXXXXq2XXX0

`BXXXXXXXq20 ` BXXXXXXXXq3 t `q 3 BXXXXXXXX
` Bq0XXXXXXXX `BXXXXXXXXq0t ` BXXXXXXXtX

Therefore, the NTM by guessing right at every step accepts the input 10101010 which
indeed belongs to L.

12.8 Simulating a non-deterministic Turing machine

Next we will show that the NTM is not more powerful than the DTM by showing that
any NTM N can be simulated by a DTM D. Given a NTM N we can construct a
DTM M with two tapes as we did for the universal Turing Machine. The only
difference in this case is that a given configuration can have a transition to multiple
configurations and an absence of a transition means a rejecting configuration. The first
tape contains the description of N . The second tape contains a sequence of
configurations of N . Initially the second tape contains the initial configuration ID0.
The DTM M does the following steps

1. If the current configuration is an accepting state for N then accept and halt.

2. If the current configuration is not accepting then the first tape is scanned for all
matching transitions from the current configuration. If non exist stop and reject.
If there are k possible transitions to configurations, say ID1 . . . IDk from the
second tape and the possible transitions of N are read from the first tape.

3. The configurations ID1 . . . IDk are appended to the second tape and ID1

becomes the current configuration.

4. Goto the first step.
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AS an example we simulate the input 1010 on the NTM given in example ???

B q01010?

B q01010FBXq1010

B q01010 ?BXq1010FBX0q110

B q01010 ?BXq1010 ?BX0q110FBX01q10 ?BXq30X0

B q01010 ? Xq1010 ?BX0q110 ?BX01q10FBXq30X0 ?BX010q1

B q01010 ? Xq1010 ?BX0q110 ?BX01q10 ?BXq30X0FBX010q1 ?Bq3X0X0

For the remainder of the computation we list only the ”active” configurations

FBX010q1 ?Bq3X0X0

FB q3X0X0 ? X010r

FX010r ? q3 BX0X0

Fq3 BX0X0

FB q0X0X0

FBXq00X0

FBXXq2X0

FBXXXq20

FBXXX0q2 ?BXXq3XX

FBXXq3XX ?BXXX0r

FBXXX0r ?BXq3XXX

FBXq3XXX

FB q3XXXX

Fq3 BXXXX
FB q0XXXX

FBXq0XXX

FBXXq0XX

FBXXXq0X

FBXXXXq0

FBXXXXt

After showing the procedure of simulating a non-deterministic machine with a
deterministic one we need to compute the number of steps needed to do the
simulation.

Theorem 12.2. If a non-deterministic machine N takes d steps to halt then a
deterministic machine M that simulates N takes at most md where m is a constant
independent of n.

Theory of Computation 110 c©Hikmat Farhat



Proof. Let m be the maximum branching number, i.e. the largest number of possible
transitions that a non-deterministic machine can have in any given state. Suppose that
the non-deterministic machine accepts after d steps in some path of its computation.
For the deterministic machine to be able to reach the accepting state of the
non-deterministic one, it has to do, in the worst-case,
m+m2 +m3 + . . .+md = O(md) steps.

�
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Lecture 13

Undecidability

13.1 Introduction
In this lecture we study what can and cannot be computed by Turing machines. It
turns out that many (infinitely many) languages cannot be computed by a TM. We will
consider three sets of languages: languages that can be decided by TM, languages that
can be recognized by a TM and the languages that cannot be even recognized by a
TM.

13.2 Decidable Languages
A language L is decidable if there exists a TM, M that halts on all input and answers
yes(by accepting the input) or no (by rejecting the input).

Example 13.1. Consider the language ADFA = {Dw|w ∈ L(D)} where D is a DFA
and w is a string. The language ADFA can be decided by the following 3-tape Turing
Machine M . On input D and w place the starting state of D,q0, on Tape 1, the string
w = w1 . . . wn on tape 2 and the transitions of D on tape 3. Initially tape 1 contains
the initial state of D: Bq0. Tape 2 contains the input w : Bw1w2 . . . wn. The
transitions of D are placed on tape 3 as follows Bp1, a, q1 ? p2, a, q2 ? . . . pk, a, qk
where each triplet pi, a, qi denotes a transition pi

a→ qi and a ∈ Σ. The TM works as
follows

1. Suppose the current state stored on tape 1 is p and the position of tape two is on
wi then scan tape 3 for a triplet p, wi, q, overwrite p with q and move tape 2 to
the right (to consider wi+1 next).

2. When a blank is encountered in tape 2 halt. If the current state stored on tape 1
is accepting, accept. Otherwise reject.

Since at every step the TM moves the head of tape 2 to the right then the TM will do at
most n (the length of w) iterations and therefore it always halts after a finite number
of steps. Also M accepts iff D accepts w.
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Example 13.2. Consider the language EDFA = {D DFA|L(D) = ∅}. A two-tape
TM, M can decide EDFA as follows. Suppose D has n states labeled 0 . . . (n− 1).
Tape 1 of M contains an n bit number where bit at position i refers to DFA state i. It
is set to 1 if state i is marked and 0 otherwise. Initially only state 0 (starting state) is
marked therefore tape 1 contains B1 0 . . . . . . 0︸ ︷︷ ︸

n−1 times

. Tape 2 contains the transitions of D

as done in the previous example. Machine M works as follows

1. Scan tape 2 for transitions of the for i, j. If bit i in tape 1 is set to 1 then mark
state j by setting bit j to 1.

2. Repeat the above until no new state is marked.

3. If no accepting state is marked reject otherwise accept.

The decider TM, M always halts in a finite number of steps. This is true because M
repeats its operation if a new state is marked but there are at most n− 1 states to
mark therefore M will repeat at most n− 1 times.

In the previous two examples we saw languages that can be decided by Turing
machines. To study languages that cannot be decided by a Turing machine we use the
diagonalization method discussed below as our starting point.

13.3 Diagonalization Method
We will use a technique called the Diagonalization Method first used by G. Cantor to
prove important results about Turing Machines and languages. First we describe the
method and show a few classic results.

Theorem 13.1. There does not exist an onto function f : N → 2N .

Proof. By contradiction. Assume that an onto function f : N → 2N exists. Then for
every i ∈ N , f(i) is a subset of N . We can build a matrix where each element at
index (i, j) is set to 1 if j ∈ f(i) and set to 0 otherwise. The matrix below is an
example:

0 1 2 3 4 . . .
f(0) 1 0 1 0 1 . . .
f(1) 0 1 0 0 1 . . .
f(2) 1 1 0 1 0 . . .
f(3) 0 0 0 1 1 . . .
. . . . . . . . . . . . . . . . . . . . .

in the table above f(0) = {0, 2, 4, . . .} and f(1) = {1, 4, . . .}. We can build a new set
(an element of 2N ) that does not appear in any row in the above matrix. Consider the
diagonal set of elements, in this example {1, 1, 0, 1, . . .}, and construct a set which is
the complement of this set, D = {0, 0, 1, 0, . . .}. D does not appear in any row
because it differs from all rows: it differs from row i by the element (i, i). To be more
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specific we can give few examples to illustrate the method. In this example D does
not contain the element 0, f(0) contains 0 thus D 6= f(0). D does not contain 1 and
f(1) contains 1 thus D 6= f(1). D contains the element 2 and f(2) does not contain 2
thus D 6= f(2).

�

We can generalize the previous theorem to the following.

Theorem 13.2. For any set A no onto function f : A→ 2A exists.

Proof. Suppose that such a function exists and consider the set
D = {x ∈ A|x /∈ f(x)}. Clearly D ⊆ A or D ∈ 2A. Since f is onto then there exist
a y such that f(y) = D. is y ∈ f(y) ?

y ∈ f(y)⇔ y ∈ D because D = f(y)

⇔ y /∈ f(y) definition of D

�

13.4 Universal and Diagonal Languages

Definition 13.1. The universal language, LRE , is defined as
LRE = {Mx|M accepts x} where M is a Turing machine and x is an arbitrary
input.

Using the binary encoding of Turing machines discussed previously, we can
enumerate them and we have an equivalent definition

Definition 13.2. The universal language can be specified as
LRE = {(u,w)|u accepts w} or equivalently LRE = {uw|w ∈ L(u)}. Where u is a
binary string representing the encoding of Mu. Note that u and w in the definition of
LRE can take all possible values.

Note that if a string is not a valid representation of a TM we can assume that it
describes a TM M such that L(M) = ∅. Central to our discussion is the diagonal
language defined below.

Definition 13.3. The diagonal language is defined as
LD = {ww|w does not accept w} or equivalently LD = {ww|w /∈ L(w)}.

Now we are ready for our first result in computability,namely that there exists a
language that is not recognized by any Turing machine.

Theorem 13.3. The language LD is not recursively enumerable, no Turing machine
M exists such that LD = L(M).
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Proof. Consider the language recognized by a given TM, u (i.e. u is fixed)
Lu = {uv|v ∈ L(u)}. Then for every possible u we have Lu 6= LD.

uu ∈ LD ⇒ u /∈ L(u)⇒ uu /∈ Lu
uu /∈ LD ⇒ u ∈ L(u)⇒ uu ∈ Lu

It follows that no Turing machine u exists such that LD = L(u). Therefore LD is not
Turing recognizable (recursively enumerable).

�

Lemma 13.1. A language is recursive if and only if its complement is recursive.

Proof. Suppose that a language L is recursive. Then there exists a total TM, M that
recognizes L. For any x ∈ {0, 1}∗ M accepts and halts if x ∈ L and M rejects and
halts if x /∈ L. Construct a total TM, N as follows

• On input x, N accepts and halts if M rejects x and halts. This implies that N
accepts x and halts if x /∈ L, i.e. x ∈ L̄.

• On input x, N rejects and halts if M accepts x and halts. This implies that N
rejects x and halts if x ∈ L, i.e x /∈ L̄.

The above two conditions lead to N decides L̄ and therefore L̄ is recursive. �

Another important lemma is the following:

Lemma 13.2. A language, L, is decidable iff it is RE and its complement, R̄, is also
RE.

Proof. One direction is easy: if L is decidable then obviously it is RE and since by
lemma 13.1 L̄ is decidable thus L̄ is also RE.
For the other direction: assume that both L and L̄ are RE and they are recognized by
M and N then construct TM R than has two tapes and works as follows:

• One tape is used to simulate M

• Second tape is used to simulate N

• R alternates between M and N .

Since any input x is either in L or L̄ then for any input either M or N will accept at
some point. If M accepts then accept and if N accepts then reject. �

Theorem 13.4. The language LRE is undecidable.

Proof. We assume, by way of contradiction, that LRE is decidable. Then there exists
a TM, R that decides LRE . Construct the following TM, D: On input M , D runs R
on MM

1. If R accepts MM then D rejects, i.e. M /∈ L(D)
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2. If R rejects MM then D accepts, i.e. M ∈ L(D)

What happens if the input to D is D itself? It runs R on DD

1. If R accepts then D ∈ LRE which means D accepts D. But by construction D
rejects D, a contradiction.

2. If R rejects then D /∈ LRE which means D does not accepts D. But by
construction D accepts D, a contradiction.

Therefore our assumption that LRE is decidable is false. �

We have shown that LRE is not decidable but is it Turing recognizable?. It is
recognizable by a TM U that works as follows: On input M,w the TM U runs M on
w

1. If M accepts U accepts

2. If M rejects U rejects

The third possibility, M loops on input w then U will not terminate.

13.5 Halting Problem
Theorem 13.5. The language LHP = {Mx|M halts on input x} is undecidable.

Remark 1. Before proving formally the undecidability of the halting problem it is
helpful to get an intuitive feel why it is undecidable. One way to build an algorithm to
decide if a machine M halts on input x is to simulate (i.e. run) M on x and wait for
the result. If M halts on x our algorithm returns true. The problem is how can our
algorithm decide that M does not halt? If our algorithm waits for, say , 10 minutes
and M did not halt it cannot conclude that M does not halt. Maybe if we have waited
a little longer it would’ve halted. This reasoning gives us also an intuitive
understanding of semi-decidability, our algorithm works in ”positive” case, when M
halts on x but it does not work in the ”negative” case, we cannot tell if a given M
does not halt.

We will show that the halting problem is undecidable by reducing it to LRE . Assume
that LHP is decidable then there exists a total TM, R such that L(R) = LHP . Now
construct a TM, S as follows

1. Given an input Mx, run R on Mx. Since R is total then it always halts:

2. If R rejects then S rejects because this means M does not halt on x.

3. If R accepts then we are sure that M halts on x then run M on x:

(a) If M accepts x then S accepts.
(b) If M rejects x then S rejects.

Therefore we have build a total TM, S that decides LRE which is a contradiction
since we know that LRE is not decidable.
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13.6 Reduction
In the proof of theorem 13.4 we used a technique of reducing one problem to another.
There is a general method called reduction or mapping reduction which allow us to
prove the decidability/undecidability of a language by reducing the problem to
another. Given two sets L1, L2 ∈ Σ∗ a map σ is called a reduction from L1 to L2, and
we write L1 ≤m L2 if

1. σ is computable by a total Turing machine.

2. x ∈ L1 ⇔ σ(x) ∈ L2.

Sometimes it is helpful to visualize the reduction using figure 13.1. Note that σ maps
instance of L1 into instances of L2. The map does not have to be onto nor one-to-one.
The notation L1 ≤m L2 gives us a sense of the direction when we need to prove a
language undecidable. Intuitively one can read L1 ≤m L2 as L2 is ”harder” than L1

so if L1 is undecidable then L2, being ”harder” than L1, has to be undecidable.

x ∈ L1

x /∈ L1

σ(x) ∈ L2

σ(x) /∈ L2

σ

σ

Figure 13.1: Reduction is a computable map σ

Theorem 13.6. Suppose that there is a reduction from L1 to L2 then

1. If L2 is recursively enumerable then L1 is.

2. If L2 is recursive then L1 is.

Proof. The proof is similar for both cases. Assume that L2 is recursively enumerable
then ∃M (if it is recursive then M is total) such that L2 = L(M) which means if
x ∈ L2 then on input x M halts and accepts. Construct N such that it halts and
accepts x if M halts and accepts σ(x).

x ∈ L1 ⇔ σ(x) ∈ L2

⇔ σ(x) ∈ L(M)

⇔ x ∈ L(N)
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Example 13.3. We will show that the halting problem is undecidable by using
reduction.

Our goal is to describe a computable map such that:

w ∈ LRE ⇔ σ(w) ∈ LHP

Therefore σ on input Mw should

1. If M accepts w convert it into M ′w′ ∈ LHP
2. If M rejects w convert it into M ′w′ /∈ LHP
3. If M loops on w convert it into M ′w′ /∈ LHP

To accomplish the above, given Mw convert it to M ′w, i.e. w = w′ and M ′ works as
follows: run M on w

1. If M accepts then accept.

2. If M rejects then loop.

The third case is if M loops on w then M ′ will also loop on w. It is important to note
that σ is computable (always terminates) even if M loops on w. What σ is doing is to
build M ′ with M as a ”subroutine” and this procedure terminates. The above is a
reduction from LRE to LH but since LRE is not decidable then LHP is undecidable.

Example 13.4. We will use reduction to prove that the language
LFIN = {M | L(M) is finite} is undecidable. We reduce the complement of LRE to
it: ¬LRE = {Mw | M does not accept w} (actually ¬LRE is not RE)

The computable function σ converts Mw into a M ′w′ such that on input w′, M ′

works as follows: M ′ runs M on w (disregarding w′):

• If M accepts w then M ′ accepts.

• If M rejects w then M ′ rejects.

This means that if Mw ∈ ¬LRE , i.e. M rejects w or loops on w then L(M ′) = ∅
(finite) because regardless of w′, M does not accept w(rejects or loops) and therefore
w′ is not accepted by M ′. And if Mw 6∈ ¬LRE then M accepts w and M ′ accepts
ALL input, i.e. L(M ′) = Σ∗ (infinite). The map σ is illustrated in Figure 13.2.

Example 13.5. Let L∅ = {M | L(M) = ∅}. We use reduction to show that the
complement of L∅ is undecidable. Then by lemma 13.1 we conclude that L∅ is also
undecidable.

We reduce LRE to ¬L∅. Given Mw then construct M ′ that on input w′ works as
follows:

• Run M on w
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L(M ′) is finite

L(M ′) is infinite

Mw ∈ ¬LRE

Mw /∈ ¬LRE

L(M ′) = ∅

L(M ′) = Σ∗

σ maps all Mw ∈ ¬LRE to a single element

σ maps all Mw /∈ ¬LRE to a single element

Figure 13.2: Reduction from ¬LRE to LFIN

– If M accepts accept regardless of w′

– If M rejects reject regardless of w′

Obviously there is the case where M does not halt on w, then M ′ will not halt and
does not accept any w′. The above means that if M accepts w then M ′ accepts ALL
input, i.e. L(M ′) = Σ∗ and therefore M ′ ∈ ¬L∅. And if M does not accept w then
M ′ doesn’t accept anything, i.e. L(M ′) = ∅ and therefore M ′ 6∈ ¬L∅. We have
shown that ¬L∅ is not decidable and therefore by lemma 13.1 L∅ is not decidable.

Example 13.6. Let LR = {M | L(M) is regular}. LR is undecidable.

It is important to recall that the reduction map does not need to be one-to-one nor
onto. We only require from a reduction σ from A to be B that w ∈ A⇔ σ(w) ∈ B.
In this example we provide a reduction σ that maps ”M accepts w” to M ′w′ where
M ′ accepts a regular language, namely Σ∗, and maps ”M does not accept w” to a
non-regular language 0n1n. It works as follows:
Given M and w construct M ′ such that on input w′

• If w′ is of the form 0n1n accept (remember that we already build a TM that can
decided if the input is of that form).

• Otherwise run M on w

– If M accepts w then accept all w′

– IF M rejects w then reject all w′

Note that in the above reduction M ′ accepts input of the form 0n1n only, i.e L(M ′) is
non-regular, if M does not accept w. And M ′ accepts all input, i.e. L(M ′) = Σ∗

regular, if M accepts w.

Example 13.7. Let LEQ = {M1M2 | L(M1) = L(M2)}. LEQ is undecidable.

We reduce L∅ to LEQ as follows: given M construct M ′ = MM∅ where M∅ is a TM
that rejects all input. To show that it is a correct reduction:
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L(M ′) is regular

L(M ′) is not regular

Mw ∈ LRE

Mw /∈ LRE

L(M ′) = Σ∗

L(M ′) = 0n1n

σ maps all Mw ∈ LRE to a single element

σ maps all Mw /∈ LRE to a single element

Figure 13.3: Reduction from LRE to LREG

• If M ∈ L∅ ⇒ L(M) = ∅ = L(M∅) thus M ′ = MM∅ ∈ LEQ.

• Conversely if M 6∈ L∅ ⇒ L(M) 6= ∅ 6= L(M∅) thus M ′ = MM∅ 6∈ LEQ.

Example 13.8. ¬HP = {Mx | M does not halt on x} is not RE

We reduce LD = {MM | M does not accept M}, which we know is not RE to it.
Given M construct M ′ on input x

• Run M on x and accept if M accepts.

• loop if M rejects.

Our reduction map on input M produces M ′M . If M ∈ LD then M does not accept
M then M ′ loops on M and therefore M ′M ∈ ¬HP . Conversely, if M 6∈ LD then
M accepts M and M ′ accepts (and halts) on M therefore M ′M 6∈ ¬HP .
We will use the above result to show that

Example 13.9. LINF = {M | L(M) is infinite } is not RE.
It is sufficient to reduce ¬HP to LINF . We use the fact that LINF = ¬LFIN and if
HP ≤m LFIN then ¬HP ≤m ¬LFIN . Therefore it is sufficient to show that HP
reduces to LFIN . Given Mx construct M ′ which in input y works as follows:

• Run M on x for |y| steps

– If M halts reject

– if M does not halt in |y| steps accepts.

If M does not halt on x then it will not halt for |y| steps for any y thus L(M ′) = Σ∗

which is infinite. If M halts on x say in n steps then M ′ accepts all strings y such that
|y|< n which is finite.

Example 13.10. Consider the language LTOTAL = {M |M halts on all input }. We
show that LTOTAL is not RE by showing that ¬HP ≤ LTOTAL.
Given Mw construct R such that on input x works as follows:
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• Run M on w for |x| steps

1. If M halts on w within |x| steps then R loops

2. If M does not halt on w within |x| steps then R halts

The result of the reduction

1. If M does not halt on w i.e. Mw ∈ ¬HP then R halts on all input x.

2. If M halts on w after s steps then

(a) For all x such |x| > s then R loops
(b) For all x such that |x| ≤ s then R halts

The consequence is that if M does not halt on w then R halts on all input x and if M
halts on w then R does not halt on some input. Therefore ¬HP ≤ LTOTAL.

Remark 2. If LTOTAL was decidable (we know it is not even RE) then we could
solve some interesting problems, for example, the Collatz conjecture. Let Mc be a
Turing machine that reads its input w ∈ {0, 1}∗, considered as integer, computes w/2
if w is even, computes 3w + 1 if w is odd. Mc keeps doing the computation until the
value on its tape is 1 then it stops. The Collatz conjecture claims that for any input w,
Mc will stop (i.e. halts on all input). If LTOTAL were decidable then ∃M that decides
LTOTAL and therefore decides if Mc ∈ LTOTAL and the conjecture can be solved.
Note that LTOTAL being undecidable does NOT mean the conjecture is true or false.

13.7 Rice’s Theorem
Theorem 13.7 (Rice). Any non-trivial property of RE sets is undecidable.

First recall that a set (language) is RE if it is recognized by some Turing Machine. But
the property is for languages not Turing Machines, for example the set of all TM such
that their language is finite or infinite. Non trivial means there are at least one TM
whose language has the property and at least one that does not have the property.

Proof. We provide a reduction from the halting problem. Assume that L∅ = ∅ does
not have the property. Since it is non-trivial then ∃R such that L(R) has the property.
Given Mx construct Mx on input y

• If M halts on x run R on y and accept if R accepts

From the above reduction we see that

• If M does not halt on x then L(Mx) = ∅, i.e. does not have the property

• If M halts on x then L(Mx) = L(R), i.e. has the property.

As a final note Rice’s theorem is about all sets defined as

L = {M |L(M) has property P}
�
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13.8 RE Completeness
Let B be a language such that for all RE languages A we have A ≤m B then B is said
to be re-hard. If B is also RE then B is said to be RE complete.

Theorem 13.8. LRE is RE complete.

Proof. We have already shown that LRE is RE so we still need to show that LRE is
re-hard, for every RE language A, A ≤m LRE . Since A is RE then ∃R such that
L(R) = A. The reduction is as follows:

• Given x ∈ Σ∗, σ(x) = Rx.

• If x ∈ A then R accepts x and thus Rx ∈ LRE .

• IF x 6∈ A then R does not accept x and thus Rx /∈ LRE .

�
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Lecture 14

Post Correspondence Problem

14.1 Introduction

In this section we introduce a word matching problem called the Post Correspondence
Problem (PCP) formulate by Emile Post in 1946. An instance of the PCP is a finite set
of pairs of strings over some alphabet. Each pair can be visualized as a ”domino” with
a string on top and another string at the bottom. For example if the alphabet is
Σ = {a, b} one possible pair (domino) is shown below[

abb

ba

]
An example of a set of such pairs looks like:{[

ab

a

]
,

[
aba

ab

]
,
[ a

baba

]}
The problem can be described as follows: given a set of pairs, can we list them
(repetition allowed) in some order such that the resulting string on top is the same as
the string at the bottom? Below is a instance of the PCP problem.

i ti bi
1 ab a
2 aba ab
3 a baba

Table 14.1: An instance of PCP

One possible solution is: [
ab

a

]
·
[
aba

baba

]
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In the above the resulting string on the top, ababa, is the same as the bottom string.
Another possible solution is:[

aba

ab

]
·
[
ab

a

]
·
[
ab

a

]
·
[ a

baba

]
Where the resulting top string is abaababa which matches the bottom string. Not all
PCP instances have a solution. For example, we will show that the instance below has
no solution.

i ti bi
1 ab aba
2 baa aa
3 aba baa

Table 14.2: An instance of PCP that has no solution

If there were a solution it has to start with with the first pairs since all the others have
a mismatch in first symbol. Now we look for the second item. The only possibility is
pair 3 since the other choices lead to[

ab

aba

]
·
[
ab

aba

]
. . . if we choose item 1[

ab

aba

]
·
[
baa

aa

]
. . . if we choose item 2

Having decided the second item the partial solution looks like

[
ab

aba

]
·
[
aba

baa

]
=

[
ababa

ababaa

]

There is a partial match but the string in the bottom is longer by one symbol. Again
our only choice is item 3 which means the bottom string will have an extra a and we
go back to where we started.

14.2 Modified PCP is Undecidable
If we force the solution to the PCP to always start from a particular ”domino” then we
obtain the modified PCP (MPCP) problem. In this section we show how to construct
from a Turing Machine M and input w a instance of the MPCP problem. Given a TM
M =< Q,Σ,Γ, δ,B,t, r, s, t > and an input string w = w1 . . . wn, we can construct
an instance of MPCP, by adding dominos, as follows. First we add the ”separator”
domino: [

#

#

]
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Then we add the domino representing the initial input:[
#

#w1 . . . wn#

]
Also for every a ∈ Γ we add to the set of dominos[a

a

]
Next we handle the transitions :

∀a, b ∈ Γ p, q ∈ Q if δ(p, a) = (q, b, R) then add
[
pa

bq

]
∀a, b, c ∈ Γ, p, q ∈ Q if δ(p, a) = (q, b, L) then add

[
cpa

qcb

]
for every c ∈ Γ

For the accepting state t we add the following :

∀a ∈ Γ add
[
at

t

]
,

[
ta

t

]
and [

t##

#

]
Note that in the construction above all the dominos, except the first domino and the
ones containing the accepting state, the number of symbols at the top is equal to the
one at the bottom.

Example 14.1. Consider the following TM
M =< Q = {p, q},Σ = {0, 1},Γ = {0, 1,t}, δ, r, s, t > with the input w = 001 and
the following transitions:

δ(p, 0) = (p, 1, R)

δ(p, 1) = (q, 0, L)

δ(q, 1) = (t, 1, R)

Following the procedure described above, the first transition results in the addition of[
p0

1p

]
The second transition results in the addition of[

0p1

q00

]
,

[
1p1

q10

]
,

[ tp1
q t 0

]
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Finally the third transition results in the addition of[
q1

1t

]
Since the TM does not write blanks we will omit all blank symbols in what follows.
The MPCP instance becomes

{[
#

#

]
,

[
#

#p001#

]
,

[
0

0

]
,

[
1

1

]
,

[
p0

1p

]
,

[
0p1

q00

]
,

[
1p1

q10

]
,

[
q1

1t

]
,

[
t##

#

]
,

[
t0

t

]
,

[
0t

t

]
,

[
t1

t

]
,

[
1t

t

]}
The above MPCP instance has the following solution:

[
#

#p001#

]
·
[
p0

1p

]
·
[

0

0

] [
1

1

]
·
[

#

#

]
·
[

1

1

] [
p0

1p

] [
1

1

] [
#

#

] [
1

1

] [
1p1

q10

] [
#

#

] [
1

1

] [
q1

1t

] [
0

0

] [
#

#

]
we continue with[

1

1

] [
1t

t

] [
0

0

] [
#

#

] [
1t

t

] [
0

0

] [
#

#

] [
t0

t

] [
#

#

] [
t##

#

]
Not only is the above a solution for the MPCP but if one looks at the bottom string we
can see that it is a sequence of legal moves of the TM leading to an accepting state.
Furthermore, since in all dominos, except the ones involving the symbol t, the upper
string is equal to the bottom string, therefore when we start with the firs domino that
has the bottom string longer that the top there is no way a solution to the MPCP can
be obtained unless we involve the ones containing the symbol t.

The conclusion we have reached in the above example is not particular to that
example. In fact we have shown how to convert any Mw instance of a TM, M and
input w into an instance of the MPCP problem where the MPCP has a solution iff M
accepts w.

Theorem 14.1. The MPCP is undecidable

Proof. We have shown that any pair Mw can be converted into MPCP instance where
the MPCP instance has a solution iff M accepts w. Suppose that MPCP is decided by
a TM S then for for any Mw we convert it into an instance I of the MPCP and run S
on I:

1. If S accepts then we accept

2. If S rejects then we reject

Since S is a decider then we have constructed a decider for LRE which is a
contradiction because we know LRE is undecidable. �
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Lecture 15

Complexity

15.1 Class P

As an example we give a multitape Turing machine that, given a graph G and two
nodes k and l, accepts if there is a path from s to t and rejects otherwise. The nodes of
the graph are labeled by numbers, the first node is labeled 0, the second 1,etc. If the
graph has N nodes that we need dlogNe bits to represent them. The TM has five
tapes T1, T2, T3, T4, T5. Initially tape T2 contains an N bits code representing node k
(NOT the value k). This code is all zeroes except the kth bit is set to one. Similarly,
tape T4 contains the code for l.Tape T3 contains all the edges of G coded as e, f
where e is the eth node connected to the f th edge, separated by a comma. The edge
representations are separated by a ?. Finally, tapes T1 and T5 are scratch tapes that
will be used during the computation. To make things clear the graph below in Figure
15.1 where the test is the connectivity of node 1 and node 4 will be represented as:
T2 : B010000
T4 : B000010
T3 : B000, 001 ? 001, 010 ? 001, 101 ? 101, 011 ? 101, 100

0 1 2 3

4 5

Figure 15.1: Example graph connectivity problem

The algorithm works by doing multiple passes over the edges in tape T3. When we
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encounter a link (i, j) then the head on T2 is positioned on bit i, if it is 0 then j is
skipped and we consider the next edge. If i is 1 then the j bit in T3 is set to 1, the
value in T5 is set to one meaning that a change has occurred. If j = k the machine
stops and accepts, if not then the machine considers the next edge. If there are no
more edges and T5 = 0 then there was no change since the last pass and the machine
stops and rejects, if T = 1 then it is set to 0 and the head of tape T3 repositioned on
the beginning of T3 and the computation continues.
To implement the above algorithm we make use of two TMs we have introduced in
last chapter. The first is the copy ”routine” that copies values of i and j from tape T3

to tape T1. The copy routine is shown below in Figure 15.2. The question marks on
some states means that those states are placeholders to be connected to a larger
machine as a subroutine.

? q0 q1 ?

t2 = b/t1 = b,R1, R3 t1 = 0, 1/L1

t3 =′,′ , ⋆/L1, R3 t1 = ⊲/R1?

Figure 15.2: Copies a value from tape T3 to tape T1

and the second routine from last chapter is the one that moves the head of tape T2, to
the kth position where k is the value stored in T1. This operation is done step by step
as follows: the value in T1 is decremented by one and simultaneously the head on T2

is moved one position to the to the right. The TM keeps doing this operation until the
value in T1 reaches zero. This subroutine is shown in Figure 15.3. The meaning of the
question marks is the same as above.
Making use of the above two algorithms we obtain the following TM that tests
whether two nodes are connected in a graph.

15.2 Class NP
Class NP is defined as all the languages that can be decided by a NTM in polynomial
time. Example
HAMPATH={(G, s, t)| a graph G has a Hamiltonian path from s to t }.
An algorithm that decides HAMPATH works as follows. Let n be the number of
nodes in the graph. Each node is encoded with n bits. Node i has all bits zeros except
the ith bit is set to one. One could use dlog ne to represent each node but it is easier to
use n bits and the polynomial time will be preserved.The NTM has three tapes.

1. Non-deterministically write n values from 1 to n on tape 1. The values are
separated by commas ’,’.

2. Check that there are no duplicates in the n values in tape 1. If there is stop and
reject because in a Hamiltonian path each of the n nodes occurs exactly once.
Operation in this step is described by the routine check below.
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? q1

q2q3q4

?

t1 = 0/R1
t1 = 0, 1/R1

t1 = 0/t1 = 1, L1

t1 = 0, 1/L1

t1 = 0/L1

t1 = 1/R1

t1 = ⊔/L1

t1 = 1/t1 = 0, L1

t1 = ⊲/R1, R2
t1 = ⊔/L1

t1 = ⊲/R1

Figure 15.3: Position the head of T2 at the kth position, where k is the value stored in
tape T1

3. In this step we are sure that each node appears on tape 1 exactly once. This is
because there are n values with no duplicates. Next test that every pair of
consecutive nodes i, j appears in the list of edges in tape 3. This is done in
routine IsEdge described below.

Routine check. Tape two has initially n zeros. Scan a value in tape 1 while scanning
tape 2. When a 1 is encountered in tape 1 check the corresponding bit in tape 2, if that
bit is 1 it means the node has been visited before, then stop and reject. If the bit on
tape 2 is a zero, set it to 1. Rewind tape 2 and scan the next value in tape 1. Keep
doing this until there are no more values in tape 1. If no duplicates are detected go to
the next step.
Routine IsEdge. Scan, simultaneously i on tape 1 and i′ on tape 3. There are two cases

Case 1 i 6= i′. Then rewind i and skip j′. Note that this means rewind tape 1 n bits to
the left and skip n bits on tape 3 to the right. Then scan again.

Case 2 i = i′.

Case 2a j = j′. Go to the next value in tape 1, i.e. j this means rewind tape 1
n bits to the left. Also rewind tape 3 to the beginning this means 2n×m
steps.

Case 2b j 6= j′. Rewind tape to the left 2n bits to reread the pair i, j.

Definition 15.1. A verifier for a language L is an algorithm V such that for w ∈ Σ∗,
∃c such that on input (w, c) the verifier V accepts iff w ∈ L.

If |c|= O(|w|n) for some n, then V is said to be a polynomial time verifier.
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Lecture 16

Lambda Calculus

Lambda calculus was invented by Alonzo Church to study the concept of
computability. The formalism is Turing Complete in a sense that any function that is
computable by a Turing machine is also computable by λ-calculus. the syntax of
λ-calculus is simple and at the heart of it is the ”term”, notation M . Let x denote
variables then a λ-calculus term can be

M := x|λx.M |MM

To avoid ambiguity we follow two rules

1. application associate left so xyz = (xy)z

2. the body of a function extends all the way to the right so λx.xyz = λx.(xyz)

Few examples are in order. suppose that the multiplication operation is defined.

F
def
= λx. ∗ 2x

what is the results if we apply it to F3 gives the output 6. How about F (F3)? this
will give 12. Conventions

16.1 Free and Bound Variables
given λx.M , if x occurs in M it is called a bound variable otherwise it is called free.
For example M ≡ (λx.xy)(λy.yz) x is a bound variable, z is a free variable and y
has a free (the first) occurrence and (the second) a bound one. Bound variables are
like dummy variables in other programming languages therefore λx.x ≡ λy.y and the
two expressions are called α-equivalent.

16.2 Substitution
an important operation on λ-calculus is substitution where a variable is substituted by
a λ-term. Given two terms M and N we write M [N/x] where N replaces x in M . On
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many occasions we would like to use an α-equivalent terms in order not to confuse
things. for example consider the expression

M ≡ λx.yx
N ≡ λz.xz

doing the substitution naively will not work M [N/y] = λx.(λz.xz)x makes the x that
was free in N bound. In this case we rename the bound variable before the
substitution M [N/y] = λu.(λz.xz)u
Also substitution affects only free variables for example (λy.yx(λx.xz))[N/x] will
reduce to λy.yN(λx.xz) and not to (λy.yN(λx.Nz))

16.3 Reductions
computation in λ-calculus is done through β-reductions. A term of the form
(λx.M)N is called a β-redex and it reduces to M [N/x]. A λ term without a redex is
said to be in normal form. example

(λx.xy)((λz.zz)(λu.u))→β (λx.xy)((λu.u)(λu.u))

→β (λx.xy)(λu.u)

→β (λu.u)y

→β y

16.4 Programming

16.4.1 Booleans
The truth values True and False are encoded as λ-terms.

T = λxy.x

F = λxy.y

to see that the above have the correct representation define the AND function as
AND

def
= λuv.uv(λab.b) then

AND TT = (λuv.uv(λab.b))(λxy.x)(λzw.z)

→β (λv.(λxy.x)v(λab.b))(λzw.z)

→β (λxy.x)(λzw.z)(λab.b)

→β (λy.(λzw.z))(λab.b)

→β (λzw.z) = T
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one might be tempted that the last term (i.e. λab.b) in the definition has not effect but
check this

AND FT = (λuv.uv(λab.b))(λxy.y)(λzw.z)

→β (λv.(λxy.y)v(λab.b))(λzw.z)

→β (λxy.y)(λzw.z)(λab.b)

→β (λy.y)(λab.b)

→β (λab.b) = F

We can use the above to define the usual if-then-else construct, IFE = (λx.x). then
we have

IFE TMN = (λx.x)(λuv.u)MN

→β (λuv.u)MN

→β (λv.M)N

→β M

16.4.2 Natural Numbers

Natural numbers are represented by Church’s numerals

0̄ = λfx.x

1̄ = λfx.fx

2̄ = λfx.f(fx)

3̄ = λfx.f(f(fx))

we define the successor function as succ = λnfx.f(nfx) then

succ n = (λnfx.f(nfx))(λgy.gny)

→β λfx.f((λgy.gny)fx)

→β λfx.f((λy.fny)x)

→β λfx.f(fnx)

→β λfx.fn+1x

= n+ 1

how about addition? define add = λmnfx.mf(nfx) then use it to add 2 and 3
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add 2 3 = (λmnfx.mf(nfx))(λgy.g(gy))(λhz.h(h(hz)))

→β (λnfx.(λgy.g(gy))f(nfx))(λhz.h(h(hz)))

→β (λnfx.(λy.f(fy))(nfx))(λhz.h(h(hz)))

→β (λnfx.f(f(nfx)))(λhz.h(h(hz)))

→β (λfx.f(f((λhz.h(h(hz)))fx)))

→β (λfx.f(f((λz.f(f(fz)))x)))

→β λfx.f(f((f(f(fx)))))

→β λfx.f5x = 5

multiplication can be defined as mult = λnmf.n(mf).

16.4.3 Recursion
Let M and N be λ-terms. We say that N is a fixpoint of M if MN = N . In untyped
lambda calculus every term has a fixpoint

untyped. Let Y = λxy.y(xxy). For any term M , Y YM is a fixpoint of M . in other
words M(Y YM) = (Y YM). This follows from

Y YM = (λxy.y(xxy))YM

→β (λy.y(Y Y y))M

→β M(Y YM)

The term Y Y is sometimes called the Turing fixpoint combinator. �

This will help us define recursive functions like factorial.

fact n = IFE(iszero n)(1)(mult n(fact(pred n))

the definition of fact contains itself on the right hand side.
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